Bert预训练模型的使用

本文介绍了如何在PyTorch中安装和使用pytorch_pretrained_bert库,包括如何替换源码中的下载地址以加速模型权重的获取。通过修改`modeling.py`和`tokenization.py`的指定行,你可以将远程URL替换为本地文件,从而避免从Amazon站点下载的延迟问题。此方法对于快速集成和使用BERT模型在本地环境尤其有用。
摘要由CSDN通过智能技术生成

pytorch_pretrained_bert的配置使用

pytorch_pretrained_bert

https://github.com/huggingface/transformers

  • 安装加载预训练模型和权重的包:pip install pytorch-pretrained-bert

  • 修改源码

    从亚马逊站点下载非常慢,可以将源码中的地址更换为本地文件。

    1. pytorch_pretrained_bert/modeling.py的 40-51行

    image-20201207210830430

    1. pytorch_pretrained_bert/tokenization.py的30-41行

image-20201207210928928

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有胡子的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值