【机器学习】英文手写体文本识别系统链接收集

Github项目地址:
https://github.com/arthurflor23/handwritten-text-recognition

IAM手写体数据集下载:
https://fki.tic.heia-fr.ch/databases/download-the-iam-handwriting-database

数据集划分Task下载:
https://fki.tic.heia-fr.ch/static/zip/largeWriterIndependentTextLineRecognitionTask.zip

入门教程:
https://lacusrinz.github.io/2020/02/06/handwritting/

### CRNN 手写体文本识别系统实现教程 #### 1. 环境准备 为了构建CRNN手写体文本识别系统,首先需要安装必要的库。主要依赖于Keras和其他辅助工具。 ```bash pip install keras tensorflow opencv-python numpy pillow h5py ``` #### 2. 数据预处理 数据预处理阶段对于任何机器学习项目都至关重要,在此过程中会加载并清理数据集以便后续训练模型。这里假设已经下载了一个合适的手写字符数据库,比如IAM Handwriting Database[^3]。 ```python import cv2 from PIL import Image import numpy as np def preprocess_image(image_path): img = Image.open(image_path).convert('L') # 转灰度图 img = img.resize((100, 32)) # 统一尺寸到固定大小 img_array = np.array(img) / 255. # 归一化像素值至[0,1] return img_array.reshape(1, 32, 100, 1) image_data = [] labels = [] for image_file in dataset_files: label = get_label_from_filename(image_file) processed_img = preprocess_image(image_file) image_data.append(processed_img) labels.append(label) ``` #### 3. 构建CRNN模型架构 CRNN结合了CNN的空间特征提取能力和RNN的时间序列分析能力来解决复杂的OCR问题。下面是一个简单的CRNN结构定义: ```python from keras.models import Model from keras.layers import Input, Dense, LSTM, Reshape, TimeDistributed, Bidirectional from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.layers.normalization import BatchNormalization input_tensor = Input(shape=(32, None, 1)) # 卷积层部分 conv_1 = Conv2D(64, kernel_size=3, activation='relu', padding='same')(input_tensor) pooling_1 = MaxPooling2D(pool_size=(2, 2))(conv_1) batch_norm_1 = BatchNormalization()(pooling_1) conv_2 = Conv2D(128, kernel_size=3, activation='relu', padding='same')(batch_norm_1) pooling_2 = MaxPooling2D(pool_size=(2, 2))(conv_2) batch_norm_2 = BatchNormalization()(pooling_2) reshape_layer = Reshape(target_shape=(int(batch_norm_2.shape[2]), int(batch_norm_2.shape[1]) * int(batch_norm_2.shape[3])))(batch_norm_2) # 双向LSTM层 blstm_1 = Bidirectional(LSTM(units=256, return_sequences=True), merge_mode="concat")(reshape_layer) dense_1 = TimeDistributed(Dense(len(characters)+1))(blstm_1) model = Model(inputs=input_tensor, outputs=dense_1) ``` 此处`characters`变量应包含所有可能的目标字符集合加上空白符作为CTC损失函数的一部分[^1]。 #### 4. 训练过程配置 设置好上述网络之后就可以编译它,并准备好相应的优化器和损失函数来进行训练。通常情况下会选择AdamOptimizer以及CTCLoss作为默认选项。 ```python from keras.optimizers import Adam from keras.backend.tensorflow_backend import set_session import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) optimizer = Adam(lr=0.001) model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=optimizer) history = model.fit(x=image_data, y=np.zeros(len(labels)), # CTC loss does not require true values here. batch_size=32, epochs=100, validation_split=0.2) ``` 注意这里的y参数传入的是全零数组,因为在计算CTC Loss时并不需要用到真实的label信息;相反,这些标签会在调用decode_predictions()方法解码预测结果的时候被用来评估性能指标。 #### 5. 测试与部署 完成训练后可以保存权重文件用于未来推理任务中快速加载模型。同时也可以编写一些脚本来测试新样本上的表现情况。 ```python model.save_weights('./crnn_model.hdf5') test_images = [preprocess_image(path) for path in test_set_paths] predictions = model.predict(np.vstack(test_images)) decoded_texts = decode_predictions(predictions) print(decoded_texts) ``` 以上就是关于如何利用Python/Keras框架搭建一个基本版的CRNN手写体文本识别系统的介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值