C3D论文笔记

C3D是一种3D卷积网络,用于视频理解和行为识别。相比2D卷积,C3D能更好地捕捉时间信息。论文表明3D ConvNets在时空特征学习上优于2D ConvNets,并在多个基准数据集上取得了最佳结果。C3D网络结构包含8个卷积层、5个池化层和全连接层,使用3x3x3卷积核,通过改变时间核长度探索最优网络架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
论文链接:http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf
代码链接:https://github.com/jfzhang95/pytorch-video-recognition

1. C3D是什么?

C3D,全称Convolutional 3D,即3D卷积。3D卷积方法是把视频划分成很多固定长度的片段(clip),相比2D卷积,3D卷积可以提取连续帧之间的运动信息,换句话说,3D卷积将视频多帧进行融合

2. 论文贡献

  • 3D ConvNets比2D ConvNets更适用于时空特征的学习
  • 对于3D ConvNet而言,在所有层使用3×3×3的小卷积核效果最好
  • 使用3D卷积学习到的特征,通过简单的线性分类器在4个不同的基准上均优于最新的方法

3. 本文方法

3.1 2D和3D卷积对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值