论文链接:http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf
代码链接:https://github.com/jfzhang95/pytorch-video-recognition
1. C3D是什么?
C3D,全称Convolutional 3D,即3D卷积。3D卷积方法是把视频划分成很多固定长度的片段(clip),相比2D卷积,3D卷积可以提取连续帧之间的运动信息,换句话说,3D卷积将视频多帧进行融合。
2. 论文贡献
- 3D ConvNets比2D ConvNets更适用于时空特征的学习
- 对于3D ConvNet而言,在所有层使用3×3×3的小卷积核效果最好
- 使用3D卷积学习到的特征,通过简单的线性分类器在4个不同的基准上均优于最新的方法