前言:
这里是基于多项式拟合的目的去推公式。
这里探讨深度较浅,推理不严谨、只有泰勒多项式、没有余项之类的。
问题:已知在的从1到n阶的导数,这有什么用?
假设y和它的n-1阶导函数连续,用n阶导和欧拉法可以求n-1阶导附近的近似值,
(欧拉法:)
这样就有3个n-1阶导,它们分别是
,3个n-1阶导再用欧拉法求附近的近似就得到5个n-2阶导,重复以上过程......,如果说n比较大,那么最终我们能得到f(x0)附近一片区域的近似。
总结一下,那就是说已知f(x)在x0的从1到n阶的导数就能得到x0附近一小片区域的曲线形状,n越大,曲线的信息就越多。
现在我们想用多项式去拟合一些超越函数,多项式好啊!多项式由加减乘除构成,上到老下到小都能算!
已知f(x)过点P(x0,y0)以及f(x)在x0从1到n阶的导数,构造多项式g(x)来拟合f(x)在P附近的曲线。根据上面的启发,我们得让g(x)在x0的导数和它相等,接下来就是推出多项式系数。
构造过P的多项式g(x),为确保它的n阶导不恒为0,我们让g(x)的次数为n:
先求1阶导看看:
x=x0带入,含有(x-x0)的项变为0,得出
又已知 ,于是系数。
2阶导也一样:
x=x0,带入,得出系数。
这规律显而易见,求出n阶导就能得到第n项系数:
于是
这个就是f(x)在x=x0处的n次泰勒多项式,精确度是关于高阶无穷小(即是)。
以下是泰勒级数:
(网络图片)