简单推一下泰勒多项式

前言:

        这里是基于多项式拟合的目的去推公式。

        这里探讨深度较浅,推理不严谨、只有泰勒多项式、没有余项之类的。

问题:已知y=f(x)x=x_0的从1到n阶的导数,这有什么用?

假设y和它的n-1阶导函数连续,用n阶导和欧拉法可以求n-1阶导附近的近似值,

(欧拉法:f(x_0\pm \Delta x)=f(x_0)\pm f'(x_0)*\Delta x)

这样就有3个n-1阶导,它们分别是f^{n-1}(x_0),f^{n-1}(x_0\pm\Delta x)

,3个n-1阶导再用欧拉法求附近的近似就得到5个n-2阶导,重复以上过程......,如果说n比较大,那么最终我们能得到f(x0)附近一片区域的近似。

总结一下,那就是说已知f(x)在x0的从1到n阶的导数就能得到x0附近一小片区域的曲线形状,n越大,曲线的信息就越多。

现在我们想用多项式去拟合一些超越函数,多项式好啊!多项式由加减乘除构成,上到老下到小都能算!

已知f(x)过点P(x0,y0)以及f(x)在x0从1到n阶的导数,构造多项式g(x)来拟合f(x)在P附近的曲线。根据上面的启发,我们得让g(x)在x0的导数和它相等,接下来就是推出多项式系数。

构造过P的多项式g(x),为确保它的n阶导不恒为0,我们让g(x)的次数为n:

先求1阶导看看:

x=x0带入,含有(x-x0)的项变为0,得出g^1(x_0)=a_1

又已知 g^1(x_0)=f^1(x_0),于是系数a_1=g^1(x_0)=f^1(x_0)

 2阶导也一样:

x=x0,g^2(x_0)=f^2(x_0)带入,得出系数a_2=\frac{f^2(x_0)}{2*1}

这规律显而易见,求出n阶导就能得到第n项系数:

 于是

这个就是f(x)在x=x0处的n次泰勒多项式,精确度是关于x^n高阶无穷小(即是lim_{x\rightarrow x_0}\frac{f(x)-g(x)}{(x-x_0)^n}=0)。

以下是泰勒级数:

 (网络图片)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值