泰勒展开基本原理,三角函数、指数函数的泰勒展开表达式

基本原理

  给定函数 f ( x ) f(x) f(x),用 n n n 阶多项式 p ( x ) p\left( x \right) p(x) x = x 0 x=x_0 x=x0 邻域内,拟合该函数 f ( x ) f(x) f(x)。将 p ( x ) p\left( x \right) p(x) 表示为一般形式:
p ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n p\left( x \right) = {a_0} + {a_1}\left( {x - {x_0}} \right) + {a_2}{\left( {x - {x_0}} \right)^2} + ... + {a_n}{\left( {x - {x_0}} \right)^n} p(x)=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n

  设置 p ( x ) p\left( x \right) p(x) f ( x ) f\left( x \right) f(x)的前 n n n 阶导数在 x = x 0 x=x_0 x=x0 处相等,从而求解系数 a 0 , a 1 , a 2 , . . . , a n a_0,a_1,a_2,...,a_n a0,a1,a2,...,an,如下所示:
{ p ( x 0 ) = f ( x 0 ) p ′ ( x 0 ) = f ′ ( x 0 ) p ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) ⋮ p ( n ) ( x 0 ) = f ( n ) ( x 0 ) → { a 0 = f ( x 0 ) a 1 = f ′ ( x 0 ) 1 ! a 2 = f ′

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值