基本原理
给定函数 f ( x ) f(x) f(x),用 n n n 阶多项式 p ( x ) p\left( x \right) p(x) 在 x = x 0 x=x_0 x=x0 邻域内,拟合该函数 f ( x ) f(x) f(x)。将 p ( x ) p\left( x \right) p(x) 表示为一般形式:
p ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n p\left( x \right) = {a_0} + {a_1}\left( {x - {x_0}} \right) + {a_2}{\left( {x - {x_0}} \right)^2} + ... + {a_n}{\left( {x - {x_0}} \right)^n} p(x)=a0+a1(x−x0)+a2(x−x0)2+...+an(x−x0)n
设置 p ( x ) p\left( x \right) p(x)与 f ( x ) f\left( x \right) f(x)的前 n n n 阶导数在 x = x 0 x=x_0 x=x0 处相等,从而求解系数 a 0 , a 1 , a 2 , . . . , a n a_0,a_1,a_2,...,a_n a0,a1,a2,...,an,如下所示:
{ p ( x 0 ) = f ( x 0 ) p ′ ( x 0 ) = f ′ ( x 0 ) p ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) ⋮ p ( n ) ( x 0 ) = f ( n ) ( x 0 ) → { a 0 = f ( x 0 ) a 1 = f ′ ( x 0 ) 1 ! a 2 = f ′