CNN--卷积神经网络的基本原理

CNN的意义

CNN能运用到图形学应用里,是因为CNN不会将整个图像作为参考。而是将图像的一部分做参考,已简化计算

 

CNN的卷积过程

图像为灰白的情况

假设图像的大小为6*6 

让网络学习的卷积核Filter 

将图像与Filter做内积   得到一个矩阵(学习的步长stride是固定的)

若干Filter组成的矩阵族叫Feature Map

 

图像为彩色图像的情况

彩色图像的卷积是拿一个三维的矩阵与Filter 而不是拿每一个RGB(channel)与Filtr计算

 

 

CNN是将full connection 的部分边去掉,这样CNN每层不会用到所有的点,

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值