快速搭建CNN(卷积神经网络),实现分类MINST数据集(学习笔记三)

1. 加载MINST数据集

如果还没有安装torch以及torchvision的,请看文章:Torch安装
安装完成之后,详细的python代码如下:

from torchvision import  datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# load train data
train_data = datasets.MNIST(
    root='data', # save in the directory data
    train=True, # True means train data, False means test data
    download=True,
    transform=ToTensor() # (0, 255) to (0, 1)
)
# load test data
test_data = datasets.MNIST(
    root='data',
    train=False, #True means train data, False means test data
    download=True,
    transform=ToTensor()
)

下载成功结果:
在这里插入图片描述
添加下列代码显示其中一条数据:

print(train_data.data.size())
print(train_data.targets.size())
plt.imshow(train_data.data[130].numpy(), cmap='gray')
plt.title('%i' % train_data.targets[130])
plt.show()

数据如下图所示:
在这里插入图片描述

2. 快速构建CNN网络

python代码:

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1, # size of input channels
                out_channels=16, # size of input channels
                kernel_size=(5, 5), # size of filter
                stride=(1, 1), # step of filter
                padding=2, # padding num
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, (5, 5), (1, 1), 2),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.flat = nn.Flatten() # flattern the result
        self.out = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.flat(x)
        out = self.out(x)
        return out

如果打印一下网络的架构,使用语句:

model = CNN()
print(model)

显示的结构如下所示:

CNN(
  (conv1): Sequential(
    (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv2): Sequential(
    (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (flat): Flatten(start_dim=1, end_dim=-1)
  (out): Linear(in_features=1568, out_features=10, bias=True)
)

3. 整体代码(CPU版本)

python代码:

import torch
import torchvision
import torch.nn as nn
import torch.utils.data as Data
import matplotlib.pyplot as plt
import numpy as np
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

# Hyper parameters
EPOCH = 1
BATCH_SIZE = 50
LR = 0.001
DOWNLOAD_MINST = True
# Download training data
train_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=True,
    transform=torchvision.transforms.ToTensor(),
    download=DOWNLOAD_MINST
)
#print(train_data.data.size())
#print(train_data.targets.size())
#plt.imshow(train_data.data[130].numpy(), cmap='gray')
#plt.title('%i' % train_data.targets[130])
#plt.show()
#
train_loader = Data.DataLoader(
    dataset=train_data,
    batch_size=BATCH_SIZE,
    shuffle=False,
    num_workers=4
)

# Download testing data
test_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=False,
)
test_x = torch.unsqueeze(test_data.data, dim=1).type(torch.FloatTensor)[:2000] / 255
test_y = test_data.targets[:2000]


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=16,
                kernel_size=(5, 5),
                stride=(1, 1),
                padding=2
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, (5, 5), (1, 1), 2),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.flat = nn.Flatten()
        self.out = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.flat(x)
        output = self.out(x)

        return output


cnn = CNN()
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
loss_fuction = nn.CrossEntropyLoss()

if __name__ == '__main__':
    for epoch in range(EPOCH):
        for step, (batch_x, batch_y) in enumerate(train_loader):
            prediction = cnn(batch_x)
            loss = loss_fuction(prediction, batch_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if step % 50 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = (sum(pred_y == np.array(test_y.data)).item()) / test_y.size(0)
                print('Epoch:%d' % epoch, end='||')
                print('train loss:%.4f' % loss.item(), end='||')
                print('test accuracy:%.4f' % accuracy)
    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')

运行结果:

Epoch:0||train loss:2.3074||test accuracy:0.2195
Epoch:0||train loss:0.2392||test accuracy:0.7895
Epoch:0||train loss:0.3036||test accuracy:0.8910
Epoch:0||train loss:0.2483||test accuracy:0.9140
Epoch:0||train loss:0.3289||test accuracy:0.9045
Epoch:0||train loss:0.1809||test accuracy:0.9275
Epoch:0||train loss:0.0711||test accuracy:0.9480
Epoch:0||train loss:0.1408||test accuracy:0.9480
Epoch:0||train loss:0.2358||test accuracy:0.9600
Epoch:0||train loss:0.2181||test accuracy:0.9445
Epoch:0||train loss:0.0309||test accuracy:0.9675
Epoch:0||train loss:0.1352||test accuracy:0.9575
Epoch:0||train loss:0.1682||test accuracy:0.9725
Epoch:0||train loss:0.0470||test accuracy:0.9735
Epoch:0||train loss:0.0341||test accuracy:0.9710
Epoch:0||train loss:0.1404||test accuracy:0.9680
Epoch:0||train loss:0.1307||test accuracy:0.9670
Epoch:0||train loss:0.1597||test accuracy:0.9720
Epoch:0||train loss:0.0743||test accuracy:0.9735
Epoch:0||train loss:0.0263||test accuracy:0.9765
Epoch:0||train loss:0.0135||test accuracy:0.9735
Epoch:0||train loss:0.0150||test accuracy:0.9770
Epoch:0||train loss:0.0122||test accuracy:0.9765
Epoch:0||train loss:0.0241||test accuracy:0.9760
[7 2 1 0 4 1 4 9 5 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number

4. 整体代码(GPU版本)

python代码:

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# hyper parameters
LR = 0.002
EPOCH = 5
BATCH_SIZE = 50

train_data = datasets.MNIST(
    root='data',
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.MNIST(
    root= 'data',
    train=False,
    download=True,
    transform=ToTensor()
)

test_loader = DataLoader(
    dataset=test_data,
    batch_size=BATCH_SIZE,
    shuffle=False,
    num_workers=4,
)

train_loader = DataLoader(
    dataset=train_data,
    batch_size=BATCH_SIZE,
    shuffle=False,
    num_workers=4,
)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=16,
                kernel_size=(5, 5),
                stride=(1, 1),
                padding=2,
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, (5, 5), (1, 1), 2),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.flat = nn.Flatten()
        self.out = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.flat(x)
        out = self.out(x)
        return out


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CNN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
loss_function = torch.nn.CrossEntropyLoss()


def train(data_loader, model, loss_function, optimizer):
    size = len(data_loader.dataset)
    model.train()
    for batch, (X, y) in enumerate(data_loader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_function(pred, y)

        # Back propagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test(data_loader, model, loss_fn):
    size = len(data_loader.dataset)
    num_batches = len(data_loader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in data_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
    torch.save(model.state_dict(), "model.pth")
	print("Saved PyTorch Model State to model.pth")


def call_model():
    for t in range(EPOCH):
        print(f"Epoch {t + 1}\n-------------------------------")
        train(train_loader, model, loss_function, optimizer)
        test(test_loader, model, loss_function)
    print("Done!")


if __name__ == '__main__':
    call_model()

结果展示:

Epoch 1
-------------------------------
loss: 2.319763  [    0/60000]
loss: 0.197887  [ 5000/60000]
loss: 0.231820  [10000/60000]
loss: 0.029967  [15000/60000]
loss: 0.193301  [20000/60000]
loss: 0.028721  [25000/60000]
loss: 0.230080  [30000/60000]
loss: 0.030196  [35000/60000]
loss: 0.088837  [40000/60000]
loss: 0.061477  [45000/60000]
loss: 0.021868  [50000/60000]
loss: 0.009769  [55000/60000]
Test Error: 
 Accuracy: 97.0%, Avg loss: 0.092558 

Epoch 2
-------------------------------
loss: 0.062530  [    0/60000]
loss: 0.037623  [ 5000/60000]
loss: 0.057986  [10000/60000]
loss: 0.003451  [15000/60000]
loss: 0.034381  [20000/60000]
loss: 0.005294  [25000/60000]
loss: 0.171846  [30000/60000]
loss: 0.042936  [35000/60000]
loss: 0.073527  [40000/60000]
loss: 0.039359  [45000/60000]
loss: 0.005118  [50000/60000]
loss: 0.003203  [55000/60000]
Test Error: 
 Accuracy: 98.6%, Avg loss: 0.041006 

Epoch 3
-------------------------------
loss: 0.018981  [    0/60000]
loss: 0.037027  [ 5000/60000]
loss: 0.030264  [10000/60000]
loss: 0.000278  [15000/60000]
loss: 0.024834  [20000/60000]
loss: 0.003731  [25000/60000]
loss: 0.117729  [30000/60000]
loss: 0.058137  [35000/60000]
loss: 0.068251  [40000/60000]
loss: 0.009537  [45000/60000]
loss: 0.015441  [50000/60000]
loss: 0.000517  [55000/60000]
Test Error: 
 Accuracy: 98.9%, Avg loss: 0.033202 

Epoch 4
-------------------------------
loss: 0.005696  [    0/60000]
loss: 0.011667  [ 5000/60000]
loss: 0.033686  [10000/60000]
loss: 0.000063  [15000/60000]
loss: 0.021328  [20000/60000]
loss: 0.001276  [25000/60000]
loss: 0.115446  [30000/60000]
loss: 0.013636  [35000/60000]
loss: 0.031956  [40000/60000]
loss: 0.006652  [45000/60000]
loss: 0.006096  [50000/60000]
loss: 0.001458  [55000/60000]
Test Error: 
 Accuracy: 98.9%, Avg loss: 0.034399 

Epoch 5
-------------------------------
loss: 0.001917  [    0/60000]
loss: 0.004953  [ 5000/60000]
loss: 0.039799  [10000/60000]
loss: 0.000086  [15000/60000]
loss: 0.087789  [20000/60000]
loss: 0.006337  [25000/60000]
loss: 0.046358  [30000/60000]
loss: 0.020176  [35000/60000]
loss: 0.009923  [40000/60000]
loss: 0.008083  [45000/60000]
loss: 0.007701  [50000/60000]
loss: 0.002184  [55000/60000]
Test Error: 
 Accuracy: 99.0%, Avg loss: 0.034642 

Done!
Saved PyTorch Model State to model.pth

5. 保存和加载模型

下面的代码是保存训练好的模型的参数:

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

而加载模型的语法则如下所示:

model = CNN()
model.load_state_dict(torch.load("model.pth"))

将训练好的模型去预测test数据集上的种类标签,完整代码如下所示:

def load_model():
    model = CNN()
    model.load_state_dict(torch.load("model.pth"))
    classes = [
        "T-shirt/top",
        "Trouser",
        "Pullover",
        "Dress",
        "Coat",
        "Sandal",
        "Shirt",
        "Sneaker",
        "Bag",
        "Ankle boot",
    ]
    model.eval()
    inputs, labels = next(iter(test_loader))
    with torch.no_grad():
        prediction = model(inputs)
        accuracy = 0
        for i in range(len(prediction)):
            predicted, actual = classes[prediction[i].argmax(0)], classes[labels[i]]
            print(f'Predicted: "{predicted}", Actual: "{actual}"')
            if predicted == actual:
                accuracy += 1
        print("accuracy:%.4f" % (accuracy / len(prediction)))


if __name__ == '__main__':
    load_model()

预测的结果如下所示,准确率为98%:

Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Pullover", Actual: "Pullover"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "T-shirt/top", Actual: "T-shirt/top"
Predicted: "Coat", Actual: "Coat"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Coat", Actual: "Coat"
Predicted: "Ankle boot", Actual: "Ankle boot"
Predicted: "Sandal", Actual: "Sandal"
Predicted: "Ankle boot", Actual: "Ankle boot"
Predicted: "T-shirt/top", Actual: "T-shirt/top"
Predicted: "Shirt", Actual: "Shirt"
Predicted: "Ankle boot", Actual: "Ankle boot"
Predicted: "T-shirt/top", Actual: "T-shirt/top"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Sandal", Actual: "Sandal"
Predicted: "Ankle boot", Actual: "Ankle boot"
Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Sandal", Actual: "Dress"
Predicted: "Coat", Actual: "Coat"
Predicted: "Ankle boot", Actual: "Ankle boot"
Predicted: "Shirt", Actual: "Shirt"
Predicted: "Shirt", Actual: "Shirt"
Predicted: "Sandal", Actual: "Sandal"
Predicted: "Coat", Actual: "Coat"
Predicted: "T-shirt/top", Actual: "T-shirt/top"
Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Coat", Actual: "Coat"
Predicted: "T-shirt/top", Actual: "T-shirt/top"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Dress", Actual: "Dress"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Dress", Actual: "Dress"
Predicted: "Coat", Actual: "Coat"
Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Pullover", Actual: "Pullover"
Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Pullover", Actual: "Pullover"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Sneaker", Actual: "Sneaker"
Predicted: "Coat", Actual: "Coat"
Predicted: "Pullover", Actual: "Pullover"
Predicted: "Dress", Actual: "Dress"
Predicted: "Sandal", Actual: "Sandal"
Predicted: "Trouser", Actual: "Trouser"
Predicted: "Pullover", Actual: "Pullover"
Predicted: "Coat", Actual: "Coat"
Predicted: "Coat", Actual: "Coat"
accuracy:0.9800

6. 测试全部测试集的内容

python代码:

def load_model():
    model = CNN()
    model.load_state_dict(torch.load("model.pth"))
    classes = [
        "T-shirt/top",
        "Trouser",
        "Pullover",
        "Dress",
        "Coat",
        "Sandal",
        "Shirt",
        "Sneaker",
        "Bag",
        "Ankle boot",
    ]
    model.eval()
    with torch.no_grad():
        accuracy = 0
        for (images, labels) in test_loader:
            predict = model(images)
            for i in range(len(predict)):
                predicted, actual = classes[predict[i].argmax(0)], classes[labels[i]]
                print(f'Predicted: "{predicted}", Actual: "{actual}"')
                if predicted == actual:
                    accuracy += 1
        print("accuracy:%.4f" % (accuracy / len(test_data.data)))
        print('num:%d' % accuracy)


if __name__ == '__main__':
    load_model()

测试结果:

...
accuracy:0.9708
num:9708

这里就不全部展开打印出来的结果了,因为总共有10000条数据,只展示最后的结果。

### 回答1: 利用卷积神经网络MINST数据集进行分类实验是一种常见和有效的图像识别方法。MINST数据集是一个手写数字图片集合,包括了60000个训练样本和10000个测试样本。 卷积神经网络(Convolutional Neural Network,CNN)是一种模拟人类视觉系统的深度学习模型,其在图像处理和模式识别任务中表现出色。使用CNNMINST数据集进行分类实验的步骤如下: 1. 数据准备:首先,将MINST数据集加载到程序中,并进行标准化处理,将图像的像素值归一化到0到1之间。 2. 构建CNN模型:这里可以使用Python的深度学习框架,如TensorFlow、Keras或PyTorch来构建CNN模型。定义卷积层、池化层和全连接层,并设置合适的卷积核大小、池化窗口大小和激活函数。 3. 模型训练:将训练集输入到CNN模型中,进行反向传播优化算法,如随机梯度下降(SGD)、Adam或RMSprop来优化模型参数。根据训练集不断调整卷积核权重、偏置和全连接层权重、偏置,直到模型收敛。 4. 模型评估:使用测试集评估已经训练好的模型。将测试集输入到CNN模型中,计算分类准确率、精确度、召回率等指标来评估模型的性能。 5. 结果分析:分析模型在测试集上的性能表现,可以观察混淆矩阵、绘制准确率和损失函数变化曲线等。 通过这样的实验,我们可以了解CNN模型在MINST数据集上的分类效果。MINST数据集是一个较为简单的图像分类任务,对于CNN来说可以很好地处理。这个实验也可以作为学习和理解CNN模型的基础,为后续更复杂的图像分类任务打下基础。 ### 回答2: 卷积神经网络(Convolutional Neural Networks, CNN)是一种深度学习模型,特别适合处理图像数据。下面我将介绍如何使用CNNMINST手写数字数据集进行分类实验。 MINST数据集是一个包含60000个训练样本和10000个测试样本的手写数字数据集。我们的目标是将这些手写数字图像正确地分类为0至9中的一个。 首先,我们需要导入所需的库和数据集。我们可以使用Python的TensorFlow库来实现卷积神经网络,并使用MINST数据集进行训练和测试。 接下来,我们定义一个CNN模型。一个典型的CNN模型由卷积层、池化层和全连接层组成。我们可以通过多次迭代来选择合适的参数和层数。 然后,我们将数据集分为训练集和测试集。训练集用于训练CNN的权重和参数,而测试集用于评估模型的性能。 接下来,我们进行训练和优化。我们使用训练集来训练CNN模型,并通过优化算法来调整权重和参数,以最小化损失函数。 在训练完成后,我们使用测试集来评估模型的性能。我们将模型应用于测试集中的图像,然后计算模型的准确率和损失。 最后,我们可以进行预测。我们可以将新的手写数字图像输入到CNN模型中,然后通过模型的输出确定该图像属于哪个数字类别。 通过上述步骤,我们可以使用CNNMINST手写数字数据集进行分类实验。这种方法在图像分类问题中已经证明了其有效性,并且在许多实际应用中得到了广泛应用。 ### 回答3: 卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,特别适用于图像处理任务。MINST数据集是一个常用的手写数字识别数据集,由60000个训练样本和10000个测试样本组成。 利用卷积神经网络MINST数据集进行分类实验的步骤如下: 1. 数据准备:首先需要下载MINST数据集,并将其分为训练集和测试集。MINST数据集提供了每个样本的数字标签和对应的图像数据。 2. 构建模型:使用深度学习框架如TensorFlow或PyTorch,搭建一个卷积神经网络模型。模型可以包含卷积层、池化层、全连接层等组件。可以选择不同的网络架构和超参数进行实验。 3. 数据预处理:在输入数据之前,进行一些预处理步骤,如将图像数据进行归一化、缩放和平衡处理等。这样可以提高模型的收敛速度和准确性。 4. 训练模型:将准备好的训练集输入模型,使用训练数据进行模型的训练。通过反向传播算法,不断调整模型的权重和偏差,使模型能够更好地拟合训练数据。 5. 测试模型:使用测试集对训练好的模型进行评估。将测试集的图像输入模型,得到输出的预测结果。计算预测结果与真实标签之间的差距,评估模型的准确性。 6. 调优和改进:根据测试结果分析模型的性能,可以进行一些调优和改进,如调整网络架构、增加层数、调整超参数等,以进一步提高模型的准确率。 通过以上步骤,可以利用卷积神经网络MINST数据集进行分类实验。可以通过测量准确度、损失函数等指标来评估模型的性能。不断优化模型,提高准确率,是卷积神经网络MINST数据集上进行分类实验的关键。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值