为什么软件开发方法论让你觉得糟糕

本文探讨了软件开发中常见的实践和方法论,如瀑布模型、迭代增量开发及敏捷开发等,并分析了它们的优势与局限性。文章指出,在选择开发方法时,应注重减少开发周期并提高反馈效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Why Software Development Methodologies Suck

There’s a lot of dogma in the religious wars around software development practices and methodologies. Are phase-gate methodologies effective at managing the risk of software development, or just risk management kabuki? Does TDD really make for higher quality software? Is pair programming a superior replacement for code review or just a way to inflate consulting rates? I’m going to argue that while scientific evidence to decide these claims is lacking, there are two general principles which can help us choose good practices while at the same time improving the value of the software we deliver: reduce cycle time and increase feedback.

Michael Feathers makes the following observation:

I think that, in the end, we just have to accept that developer skill is a far more significant variable than language choice or methodological nuances1. Frankly, I think we all know that, but we seem to suffer from the delusion that they are the primary knobs to tweak. Maybe it’s an extension of the deeply held view that from an economic viewpoint, it would be ideal if people were interchangeable.

The problem is, how do we get skilled developers? Since the concept of individual productivity in IT has never been satisfactorily defined, this is a particularly hard problem to solve. Lines of code - still a popular measure - suffers from the devastating flaw that a line of code is a liability, not an asset as is often thought. Measuring number of hours worked encourages heroic behavior - but experience shows that the “heroes” are usually the same people that cause projects to become late through taking unacceptable risks early on, and working long hours makes people stupid and leads to poor quality software. There is still no generally accepted set of professional standards or chartering system for IT professionals, and recruiting good people is very much an art rather than a science.

Psychologists have at least addressed the problem of why it is so difficult to acquire and measure skill in IT. As Daniel Kahneman says in Thinking Fast and Slow, there are “two basic conditions for acquiring a skill: an environment that is sufficiently regular to be predictable; [and] an opportunity to learn these regularities through prolonged practice.”

But traditional software projects are the opposite of a regular, predictable environment. The only good measure of success of a project - did the end result create the expected value over its lifetime? - is so distant from the critical decisions that caused that success or failure that it’s rare for anybody from the original team even to be present to get the feedback. It’s practically impossible to determine which of those decisions led to success or failure (in artificial intelligence, this is known as the credit-assignment problem).

软件开发实践和方法论,
常见的软件开发过程方法有:瀑布模型、迭代增量开发、敏捷开发等。

迭代增量开发弥补了瀑布模型严格分级、缺少阶段间反馈的缺点。在迭代增量开发中,项目被分割成一系列时间较短的迭代,同时整个工程被分成了不同的小部分,每一次迭代后都比上一次增加一些功能。这些小迭代中都会包括需求分析、设计、实现、测试。通过这种方法,开发可在需求被完整定义前启动,并在每次迭代完成后,通过用户反馈来细化进一步需求,并开始新一轮迭代。迭代增量开发是基于瀑布模型的,但它不要求每一次迭代出来完美的结果,而是先把主要功能构建出来,通过反馈不断完善。
迭代增量开发仍然是一种过程模型,只是从瀑布模型的线性关系转变成迭代关系,因此它仍然十分强调文档的重要性
处。

阶段式(phase-gate)方法能够有效管理软件开发过程的风险,还是说只是风险管理中的花哨噱头?TDD真的能够促生出高品质软件?结对编程是代码评审的有效替代抑或只是增加了商议沟通代价?有两条常用的法则能够帮助我们选择好的实践,同时,提升我们所提供软件的价值:划小开发周期以及提升反馈效率。
我认为,我们还是得倚重开发者的能力,这才是个更重要的考量因素,而非选择哪门语言或纠结于方法论间的细微差别[1]。坦诚地说,我们都清楚这点,但我们看起来好像过度纠结于开发能力是关键因素这事儿上。或许这是个经济学里一个被广泛接受的观点的引申,但如果人是可以轻易轮换的(随便找个人都能顶上),那才是堪称理想的。

你可能会认为当我们决定怎样运作一个团队时,我们就陷入了被动。但细想一下为什么软件开发无章可循?为什么在这个环境里很难进行一些试验以及获取技能?什么实践和决定会导致成功或失败?其中的根原因就是:环境是无规律的,做出变更与理解变更带来的结果之间的反馈过程太长了。这里的“变更”一词是指广义上的需求变更、方法变更、开发实践变更、商业计划变更、代码或配置变更等等。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值