Wallis公式

Wallis公式

lim ⁡ n → + ∞ ( 2 2 n ( n ! ) 2 ( 2 n ) ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+ \infty }\left ( \frac{2^{2n}\left ( n! \right )^{2}}{\left ( 2n \right)!} \right )^{2} \frac{1}{2n+1}=\frac{\pi }{2} n+lim((2n)!22n(n!)2)22n+11=2π
或者是 lim ⁡ n → + ∞ ( ( 2 n ) ! ! ( 2 n − 1 ) ! ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+ \infty }\left (\frac{\left ( 2n \right )!!}{\left ( 2n -1\right )!!}\right )^{2} \frac{1}{2n+1}=\frac{\pi }{2} n+lim((2n1)!!(2n)!!)22n+11=2π
( ! ! !! !!是双阶乘,不超过这个整数且具有相同奇偶的正整数相乘,比如 5 ! ! = 1 ∗ 3 ∗ 5 , 6 ! ! = 2 ∗ 4 ∗ 6 5!!=1*3*5,6!!=2*4*6 5!!=135,6!!=246)
证明:
I ( n ) = ∫ 0 π 2 sin ⁡ n x d x I\left ( n \right )=\int_{0}^{\frac{\pi }{2}}\sin ^{n}xdx I(n)=02πsinnxdx
I ( n ) = ∫ 0 π 2 sin ⁡ n x d x = − sin ⁡ n − 1 x cos ⁡ x ∣ 0 π 2 + ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x cos ⁡ 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x ( 1 − sin ⁡ 2 x ) d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x d x = ( n − 1 ) I ( n − 2 ) − ( n − 1 ) I ( n ) \begin{aligned} I\left ( n \right )&=\int_{0}^{\frac{\pi }{2}}\sin ^{n}xdx\\ &=-\sin ^{n-1}x\cos x|_{0}^{\frac{\pi }{2} }+\left ( n-1 \right )\int_{0}^{\frac{\pi }{2}}\sin ^{n-2}x\cos ^{2}x dx\\ &=\left ( n-1 \right )\int_{0}^{\frac{\pi }{2}}\sin ^{n-2}x\left ( 1-\sin ^{2}x \right ) dx\\ &=\left ( n-1 \right )\int_{0}^{\frac{\pi }{2}}\sin ^{n-2}dx-\left ( n-1 \right )\int_{0}^{\frac{\pi }{2}}\sin ^{n}xdx\\ &=\left ( n-1 \right )I\left ( n-2 \right )-\left ( n-1 \right )I\left ( n \right ) \end{aligned} I(n)=02πsinnxdx=sinn1xcosx02π+(n1)02πsinn2xcos2xdx=(n1)02πsinn2x(1sin2x)dx=(n1)02πsinn2dx(n1)02πsinnxdx=(n1)I(n2)(n1)I(n)
∴ I ( n ) = ( n − 1 ) n I ( n − 2 ) ∴ I ( n ) I ( n − 2 ) = n − 1 n ∴ I ( n − 2 ) I ( n ) = n n − 1 ∴ I ( 2 n − 1 ) I ( 2 n + 1 ) = 2 n + 1 2 n I ( 0 ) = π 2 I ( 1 ) = 1 I ( 2 n ) = 2 n − 1 2 n I ( 2 n − 2 ) = 2 n − 1 2 n 2 n − 3 2 n − 2 I ( 2 n − 4 ) = ( 2 n − 1 ) ! ! ( 2 n ) ! ! π 2 \therefore I\left(n \right )=\frac{\left(n-1 \right )}{n}I\left(n-2 \right )\\\therefore\frac{I\left ( n \right )}{I\left ( n-2\right )}=\frac{n-1}{n}\\\therefore\frac{I\left(n-2 \right )}{I\left(n\right )}=\frac{n}{n-1}\\\therefore\frac{I\left(2n-1 \right )}{I\left(2n+1 \right )}=\frac{2n+1}{2n}\\I\left(0 \right )=\frac{\pi}{2}\\I\left(1 \right )=1\\I\left(2n \right )=\frac{2n-1}{2n}I\left(2n-2 \right )=\frac{2n-1}{2n}\frac{2n-3}{2n-2}I\left(2n-4 \right )=\frac{\left(2n-1 \right )!!}{\left(2n \right )!!}\frac{\pi}{2} I(n)=n(n1)I(n2)I(n2)I(n)=nn1I(n)I(n2)=n1nI(2n+1)I(2n1)=2n2n+1I(0)=2πI(1)=1I(2n)=2n2n1I(2n2)=2n2n12n22n3I(2n4)=(2n)!!(2n1)!!2π
∵ x ∈ [ 0 , π 2 ] , 0 ≤ s i n x ≤ 1 \because x\in\left [ 0,\frac{\pi}{2} \right ],0\leq sinx\leq1 x[0,2π],0sinx1
∴ sin ⁡ 2 n + 1 x ≤ sin ⁡ 2 n x ≤ sin ⁡ 2 n − 1 x ( 2 n ) ! ! ( 2 n + 1 ) ! ! ≤ ( 2 n − 1 ) ! ! ( 2 n ) ! ! π 2 ≤ ( 2 n − 2 ) ! ! ( 2 n − 1 ) ! ! I ( 2 n + 1 ) ≤ I ( 2 n ) ≤ I ( 2 n − 1 ) ( 2 n ) ! ! ( 2 n + 1 ) ! ! ≤ ( 2 n − 1 ) ! ! ( 2 n ) ! ! π 2 ≤ ( 2 n − 2 ) ! ! ( 2 n − 1 ) ! ! 1 ≤ ( 2 n + 1 ) ! ! ( 2 n ) ! ! ( 2 n − 1 ) ! ! ( 2 n ) ! ! π 2 ≤ ( 2 n + 1 ) ! ! ( 2 n ) ! ! ( 2 n − 2 ) ! ! ( 2 n − 1 ) ! ! 1 ≤ π 2 ( ( 2 n ) ! ! ) 2 ( 2 n + 1 ) ! ! ( 2 n − 1 ) ! ! ≤ 2 n + 1 2 n \begin{aligned} \therefore\sin^{2n+1}x\leq& \sin^{2n}x &\leq&\sin^{2n-1}x\\ \frac{\left (2n \right )!!}{\left (2n +1\right )!!}\leq &\frac{\left(2n-1 \right )!!}{\left(2n \right )!!} \frac{\pi}{2}&\leq &\frac{\left(2n-2 \right )!!}{\left(2n-1 \right )!!}\\ I\left(2n+1 \right )\leq &I\left(2n \right )&\leq& I\left(2n-1 \right )\\ \frac{\left (2n \right )!!}{\left (2n +1\right )!!}\leq &\frac{\left(2n-1 \right )!!}{\left(2n \right )!!} \frac{\pi}{2}&\leq &\frac{\left(2n-2 \right )!!}{\left(2n-1 \right )!!}\\ 1\leq& \frac{\left(2n+1 \right )!!}{\left(2n \right )!!}\frac{\left(2n-1 \right )!!}{\left(2n \right )!!}\frac{\pi}{2}&\leq &\frac{\left(2n+1 \right )!!}{\left(2n \right )!!}\frac{\left(2n-2 \right )!!}{\left(2n-1 \right )!!}\\ 1\leq &\frac{\frac{\pi}{2}}{\frac{\left(\left(2n \right )!! \right )^{2}}{\left(2n+1 \right )!!\left(2n-1 \right )!!}}&\leq& \frac{2n+1}{2n} \end{aligned} sin2n+1x(2n+1)!!(2n)!!I(2n+1)(2n+1)!!(2n)!!11sin2nx(2n)!!(2n1)!!2πI(2n)(2n)!!(2n1)!!2π(2n)!!(2n+1)!!(2n)!!(2n1)!!2π(2n+1)!!(2n1)!!((2n)!!)22πsin2n1x(2n1)!!(2n2)!!I(2n1)(2n1)!!(2n2)!!(2n)!!(2n+1)!!(2n1)!!(2n2)!!2n2n+1
lim ⁡ n → + ∞ 2 n + 1 2 n = 1 \lim\limits_{n\rightarrow +\infty }\frac{2n+1}{2n}=1 n+lim2n2n+1=1
由夹逼准则
lim ⁡ n → + ∞ π 2 ( ( 2 n ) ! ! ) 2 ( 2 n + 1 ) ! ! ( 2 n − 1 ) ! ! = 1 \lim\limits_{n\rightarrow+\infty}\frac{\frac{\pi}{2}}{\frac{\left(\left(2n \right )!! \right )^{2}}{\left(2n+1 \right )!!\left(2n-1 \right )!!}}=1 n+lim(2n+1)!!(2n1)!!((2n)!!)22π=1

lim ⁡ n → + ∞ ( ( 2 n ) ! ! ) 2 ( 2 n + 1 ) ! ! ( 2 n − 1 ) ! ! = π 2 ⇔ lim ⁡ n → + ∞ ( ( 2 n ) ! ! ( 2 n − 1 ) ! ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+\infty}\frac{\left(\left(2n \right )!! \right )^{2}}{\left(2n+1 \right )!!\left(2n-1 \right )!!}=\frac{\pi}{2}\Leftrightarrow \lim\limits_{n\rightarrow+ \infty }\left (\frac{\left ( 2n \right )!!}{\left ( 2n -1\right )!!}\right )^{2} \frac{1}{2n+1}=\frac{\pi }{2} n+lim(2n+1)!!(2n1)!!((2n)!!)2=2πn+lim((2n1)!!(2n)!!)22n+11=2π

lim ⁡ n → + ∞ ( 2 n n ! ) 2 ( 2 n − 1 ) ! ! ( 2 n + 1 ) ! ! = π 2 \lim\limits_{n\rightarrow+\infty}\frac{\left(2^{n}n! \right )^{2}}{\left(2n-1 \right )!!\left(2n+1 \right )!!}=\frac{\pi}{2} n+lim(2n1)!!(2n+1)!!(2nn!)2=2π

lim ⁡ n → + ∞ ( 2 n n ! ) 2 ( ( 2 n ) ! ! ) 2 ( ( 2 n ) ! ) 2 ( 2 n + 1 ) = π 2 \lim\limits_{n\rightarrow+\infty}\frac{\left(2^{n}n! \right )^{2}\left(\left(2n \right )! !\right )^{2}}{\left(\left(2n \right )! \right )^{2}\left(2n+1 \right )}=\frac{\pi}{2} n+lim((2n)!)2(2n+1)(2nn!)2((2n)!!)2=2π

lim ⁡ n → + ∞ ( ( 2 n n ! ) 2 ( 2 n ) ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+\infty}\left(\frac{\left(2^{n}n! \right )^{2}}{\left(2n \right )!} \right )^{2}\frac{1}{2n+1}=\frac{\pi}{2} n+lim((2n)!(2nn!)2)22n+11=2π

lim ⁡ n → + ∞ ( 2 2 n ( n ! ) 2 ( 2 n ) ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+ \infty }\left ( \frac{2^{2n}\left ( n! \right )^{2}}{\left ( 2n \right)!} \right )^{2} \frac{1}{2n+1}=\frac{\pi }{2} n+lim((2n)!22n(n!)2)22n+11=2π

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值