华里士(Wallis)公式推导

这里给出手写版公式推导过程,后面有空再整理成电子版。

\begin{align*} I_{n} &=\int_{0}^{\frac{\pi}{2}}\sin ^{n}xdx\\ &= \int_{0}^{\frac{\pi}{2}}\sin ^{n-1}x \sin xdx \\ &= - \int_{0}^{\frac{\pi}{2}}\sin ^{n-1}x d\cos x\\ &= (-\sin ^{n-1}x \cos x) |_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}}\cos x d\sin^{n-1} x\\ &= 0 + \int_{0}^{\frac{\pi}{2}}(n-1)\sin ^{n-2}x \cos^{2} xdx \\ &= 0 + \int_{0}^{\frac{\pi}{2}}(n-1)\sin ^{n-2}x (1-\sin^{2} x)dx \\ &= (n-1)\int_{0}^{\frac{\pi}{2}}\sin ^{n-2}x dx - (n-1)\int_{0}^{\frac{\pi}{2}}\sin ^{n}x dx\\ &= (n-1)I_{n-2} - (n-1)I_{n}\\ \\ \Rightarrow & I_{n} = (n-1)I_{n-2} - (n-1)I_{n} \\ \Rightarrow & I_{n} = (\frac{n-1}{n})I_{n-2} \\ \because & I_{0} = \int_{0}^{\frac{\pi}{2}}\sin ^{0}xdx = \int_{0}^{\frac{\pi}{2}}1dx = \frac{\pi}{2}\\ & I_{1} = \int_{0}^{\frac{\pi}{2}}\sin ^{1}xdx = 1\\ \therefore I_{n} &=\int_{0}^{\frac{\pi}{2}}\sin ^{n}xdx= \left\{\begin{matrix} \frac{n-1}{n} \frac{n-3}{n-2} ...\frac{1}{2} I_{0}\\ \frac{n-1}{n} \frac{n-3}{n-2} ...\frac{2}{3} I_{1} \end{matrix}\right. \end{align*}

\begin{align*} I_{n} &=\int_{0}^{\frac{\pi}{2}}\cos ^{n}xdx\\ &= \int_{0}^{\frac{\pi}{2}}\cos ^{n-1}x \cos xdx \\ &= \int_{0}^{\frac{\pi}{2}}\cos ^{n-1}x d\sin x\\ &= (\cos ^{n-1}x \sin x) |_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}}\sin x d\cos^{n-1} x\\ &= 0 + \int_{0}^{\frac{\pi}{2}}(n-1)\cos ^{n-2}x \sin^{2} xdx \\ &= 0 + \int_{0}^{\frac{\pi}{2}}(n-1)\cos ^{n-2}x (1-\cos^{2} x)dx \\ &= (n-1)\int_{0}^{\frac{\pi}{2}}\cos ^{n-2}x dx - (n-1)\int_{0}^{\frac{\pi}{2}}\cos ^{n}x dx\\ &= (n-1)I_{n-2} - (n-1)I_{n}\\ \\ \Rightarrow & I_{n} = (n-1)I_{n-2} - (n-1)I_{n} \\ \Rightarrow & I_{n} = (\frac{n-1}{n})I_{n-2} \\ \because & I_{0} = \int_{0}^{\frac{\pi}{2}}\cos ^{0}xdx = \int_{0}^{\frac{\pi}{2}}1dx = \frac{\pi}{2}\\ & I_{1} = \int_{0}^{\frac{\pi}{2}}\cos ^{1}xdx = 1\\ \therefore I_{n} &=\int_{0}^{\frac{\pi}{2}}\cos ^{n}xdx = \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} ...\frac{1}{2} I_{0} \\ \frac{n-1}{n} \frac{n-3}{n-2} ...\frac{2}{3} I_{1} \end{cases} \\ \end{align*}

欧拉-泊松公式:

\int_{-\infty }^{-\infty } e^{-x^{2}}dx=\sqrt{\pi} \ \ \ \ \ \ \int_{0 }^{-\infty } e^{-x^{2}}dx= \frac{ \sqrt{\pi}}{2}\\ \begin{align*} \because f(x) &= \frac{1}{\sqrt{2\pi }\delta }e^{-\frac{(x-\mu )^{2}}{2\delta ^{2}}}dx, X\sim N(0,1)\\ &=\frac{1}{\sqrt{2\pi } }e^{-\frac{x ^{2}}{2}}dx \end{align*}\\ \int_{-\infty }^{+\infty } f(x)dx= \int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi } }e^{-\frac{x ^{2}}{2}}dx=1\\ \\ \begin{align*} \Rightarrow \int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi } }e^{-\frac{x ^{2}}{2}}dx &= \int_{-\infty }^{+\infty }\frac{1}{\sqrt{\pi } }e^{-(\frac{x }{\sqrt{2}})^{2}}d\frac{x}{\sqrt{2}}\\ &=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{\pi } }e^{-t^{2}}dt\\ &=1 \end{align*}\\ \Rightarrow \int_{-\infty }^{-\infty } e^{-x^{2}}dx=\sqrt{\pi}\\ \Rightarrow \int_{0 }^{-\infty } e^{-x^{2}}dx= \frac{ \sqrt{\pi}}{2}

 

\sum_{k=0}^{+\infty }\frac{x^k}{k!}=e^{x}\\ \\ \because X\sim P(\lambda)\Rightarrow P(X=k)=\frac{\lambda ^{k}}{k!}e^{-\lambda }\\ \therefore \sum_{0}^{+\infty } P(X=k) = \sum_{0}^{+\infty } \frac{\lambda ^{k}}{k!}e^{-\lambda } = e^{-\lambda } \sum_{0}^{+\infty } \frac{\lambda ^{k}}{k!} = 1\\ \Rightarrow \sum_{0}^{+\infty } \frac{\lambda ^{k}}{k!} = e^{\lambda }\\ \Rightarrow \sum_{k=0}^{+\infty }\frac{x^k}{k!}=e^{x}\\

  • 41
    点赞
  • 100
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值