康托洛维奇不等式

标量形式

a i , λ i > 0 ( i = 1 , 2 , ⋯   , n ) a_i,\lambda_i>0(i=1,2,\cdots,n) ai,λi>0(i=1,2,,n), ∑ i = 1 n a i = 1 \sum_{i=1}^{n}a_i=1 i=1nai=1, λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n \lambda_1\le \lambda_2\le\cdots\le\lambda_n λ1λ2λn,则
( ∑ i = 1 n λ i a i ) ( ∑ i = 1 n λ i − 1 a i ) ≤ ( λ 1 + λ n ) 2 4 λ 1 λ n (\sum_{i=1}^{n}\lambda_i a_i)(\sum_{i=1}^{n}\lambda_i^{-1} a_i)\le \frac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n} (i=1nλiai)(i=1nλi1ai)4λ1λn(λ1+λn)2
证明:
f ( x ) = ( ∑ i = 1 n λ i − 1 a i ) x 2 − λ 1 + λ n λ 1 λ n x + ∑ i = 1 n λ i a i f(x)=(\sum_{i=1}^{n}\lambda_i^{-1} a_i)x^2-\frac{\lambda_1+\lambda_n}{\sqrt{\lambda_1\lambda_n}}x+\sum_{i=1}^{n}\lambda_i a_i f(x)=(i=1nλi1ai)x2λ1λn λ1+λnx+i=1nλiai
f ( λ 1 λ n ) = ( ∑ i = 1 n λ i − 1 a i ) λ 1 λ n − ( λ 1 + λ n ) + ∑ i = 1 n λ i a i = λ n a 1 + λ 1 a n + ( ∑ i = 2 n − 1 λ i − 1 a i ) λ 1 λ n − ( λ 1 + λ n ) + λ 1 a 1 + λ n a n + ∑ i = 2 n − 1 λ i a i = ( a 1 + a n − 1 ) ( λ 1 + λ n ) + ( ∑ i = 2 n − 1 λ i − 1 a i ) λ 1 λ n + ∑ i = 2 n − 1 λ i a i = ( a 1 + a n − ∑ i = 1 n a i ) ( λ 1 + λ n ) + ( ∑ i = 2 n − 1 λ i − 1 a i ) λ 1 λ n + ∑ i = 2 n − 1 λ i a i = − ∑ i = 2 n − 1 a i ( λ 1 + λ n ) + ( ∑ i = 2 n − 1 λ i − 1 a i ) λ 1 λ n + ∑ i = 2 n − 1 λ i a i = ∑ i = 2 n − 1 a i ( λ 1 + λ n + λ i − 1 λ 1 λ n + λ i ) = ∑ i = 2 n − 1 a i λ i 2 + ( λ 1 + λ n ) λ i + λ 1 λ n λ i = ∑ i = 2 n − 1 a i ( λ i − λ 1 ) ( λ i − λ n ) λ i ≤ 0 \begin{aligned} f(\sqrt{\lambda_1\lambda_n})&=(\sum_{i=1}^{n}\lambda_i^{-1} a_i)\lambda_1 \lambda_n-(\lambda_1+\lambda_n)+\sum_{i=1}^{n}\lambda_i a_i \\ &=\lambda_n a_1+\lambda_1 a_n+(\sum_{i=2}^{n-1}\lambda_i^{-1} a_i)\lambda_1 \lambda_n-(\lambda_1+\lambda_n)+\lambda_1 a_1+\lambda_n a_n+\sum_{i=2}^{n-1}\lambda_i a_i \\ &=(a_1+a_n-1)(\lambda_1+\lambda_n)+(\sum_{i=2}^{n-1}\lambda_i^{-1} a_i)\lambda_1 \lambda_n+\sum_{i=2}^{n-1}\lambda_i a_i\\ &=(a_1+a_n-\sum_{i=1}^{n}a_i)(\lambda_1+\lambda_n)+(\sum_{i=2}^{n-1}\lambda_i^{-1} a_i)\lambda_1 \lambda_n+\sum_{i=2}^{n-1}\lambda_i a_i\\ &=-\sum_{i=2}^{n-1}a_i(\lambda_1+\lambda_n)+(\sum_{i=2}^{n-1}\lambda_i^{-1} a_i)\lambda_1 \lambda_n+\sum_{i=2}^{n-1}\lambda_i a_i\\ &=\sum_{i=2}^{n-1}a_i(\lambda_1+\lambda_n+\lambda_i^{-1}\lambda_1 \lambda_n+\lambda_i )\\ &=\sum_{i=2}^{n-1}a_i\frac{\lambda_i^2+(\lambda_1+\lambda_n)\lambda_i+\lambda_1 \lambda_n}{\lambda_i}\\ &=\sum_{i=2}^{n-1}a_i\frac{(\lambda_i-\lambda_1)(\lambda_i-\lambda_n)}{\lambda_i}\\ &\le 0 \end{aligned} f(λ1λn )=(i=1nλi1ai)λ1λn(λ1+λn)+i=1nλiai=λna1+λ1an+(i=2n1λi1ai)λ1λn(λ1+λn)+λ1a1+λnan+i=2n1λiai=(a1+an1)(λ1+λn)+(i=2n1λi1ai)λ1λn+i=2n1λiai=(a1+ani=1nai)(λ1+λn)+(i=2n1λi1ai)λ1λn+i=2n1λiai=i=2n1ai(λ1+λn)+(i=2n1λi1ai)λ1λn+i=2n1λiai=i=2n1ai(λ1+λn+λi1λ1λn+λi)=i=2n1aiλiλi2+(λ1+λn)λi+λ1λn=i=2n1aiλi(λiλ1)(λiλn)0
f ( x ) f(x) f(x)是抛物线,开口向上,且至少有一个零点,所以 f ( x ) = 0 f(x)=0 f(x)=0的判别式 Δ = b 2 − 4 a c ≥ 0 \Delta =b^2-4ac\ge 0 Δ=b24ac0
从而
( ∑ i = 1 n λ i a i ) ( ∑ i = 1 n λ i − 1 a i ) ≤ ( λ 1 + λ n ) 2 4 λ 1 λ n (\sum_{i=1}^{n}\lambda_i a_i)(\sum_{i=1}^{n}\lambda_i^{-1} a_i)\le \frac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n} (i=1nλiai)(i=1nλi1ai)4λ1λn(λ1+λn)2

矩阵形式

矩阵 G ∈ S + + n G\in S_{++}^{n} GS++n,其特征值 λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n , \lambda_1\le \lambda_2\le \cdots \le \lambda_n, λ1λ2λn,则, ∀ x ∈ R n \forall x\in R^n xRn,有
( x T G x ) ( x T G − 1 x ) ( x T x ) 2 ≤ ( λ 1 + λ n ) 2 4 λ 1 λ n \frac{(x^T G x)(x^T G^{-1}x)}{(x^T x)^2}\le \frac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n} (xTx)2(xTGx)(xTG1x)4λ1λn(λ1+λn)2
证明:
G ∈ S + + n G\in S_{++}^{n} GS++n,实对称矩阵必可对角化
存在正交矩阵 P P P,使得 G = P T Λ P G=P^T \Lambda P G=PTΛP,其中 Λ P = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) \Lambda P=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) ΛP=diag(λ1,λ2,,λn)
y = P x , a i = y i 2 y=Px,a_i=y_i^2 y=Px,ai=yi2
( x T G x ) ( x T G − 1 x ) ( x T x ) 2 = ( x T P T Λ P x ) ( x T P T Λ − 1 P x ) ( x T P T P x ) 2 = ( y T Λ y ) ( y T Λ − 1 y ) ( y T y ) 2 = ( y T Λ y ) ( y T Λ − 1 y ) ( y T y ) 2 = ( ∑ i = 1 n λ i y i 2 ) ( ∑ i = 1 n λ i − 1 y i 2 ) ( ∑ i = 1 n y i 2 ) 2 = ( ∑ i = 1 n λ i a i ) ( ∑ i = 1 n λ i − 1 a i ) ( ∑ i = 1 n a i ) 2 = ( ∑ i = 1 n λ i a i ∑ j = 1 n a j ) ( ∑ i = 1 n λ i − 1 a i ∑ i = j n a j ) ( 其中 ∑ i = 1 n a i ∑ j = 1 n a j = 1 ) ≤ ( λ 1 + λ n ) 2 4 λ 1 λ n ( 标量形式 ) \begin{aligned} \frac{(x^T G x)(x^T G^{-1}x)}{(x^T x)^2} &=\frac{(x^TP^T \Lambda P x)(x^TP^T \Lambda^{-1} P x) }{(x^T P^T Px)^2}\\ &=\frac{(y^T \Lambda y)(y^T \Lambda^{-1} y) }{(y^T y)^2}\\ &=\frac{(y^T \Lambda y)(y^T \Lambda^{-1} y) }{(y^T y)^2}\\ &=\frac{(\sum_{i=1}^{n}\lambda_i y_i^2)(\sum_{i=1}^{n}\lambda_i^{-1} y_i^2) }{(\sum_{i=1}^{n}y_i^2)^2}\\ &=\frac{(\sum_{i=1}^{n}\lambda_i a_i)(\sum_{i=1}^{n}\lambda_i^{-1} a_i) }{(\sum_{i=1}^{n}a_i)^2}\\ &=(\sum_{i=1}^{n}\lambda_i \frac{a_i}{\sum_{j=1}^{n}a_j})(\sum_{i=1}^{n}\lambda_i^{-1} \frac{a_i}{\sum_{i=j}^{n}a_j})(\text{其中}\sum_{i=1}^{n}\frac{a_i}{\sum_{j=1}^{n}a_j}=1) \\ &\le \frac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n}(\text{标量形式}) \end{aligned} (xTx)2(xTGx)(xTG1x)=(xTPTPx)2(xTPTΛPx)(xTPTΛ1Px)=(yTy)2(yTΛy)(yTΛ1y)=(yTy)2(yTΛy)(yTΛ1y)=(i=1nyi2)2(i=1nλiyi2)(i=1nλi1yi2)=(i=1nai)2(i=1nλiai)(i=1nλi1ai)=(i=1nλij=1najai)(i=1nλi1i=jnajai)(其中i=1nj=1najai=1)4λ1λn(λ1+λn)2(标量形式)

积分形式

f ( x ) f(x) f(x) [ a , b ] \left[a,b\right] [a,b]上是连续正值函数, M = max ⁡ a ≤ x ≤ b f ( x ) M=\max \limits_{a\le x \le b} f(x) M=axbmaxf(x), m = min ⁡ a ≤ x ≤ b f ( x ) m=\min \limits_{a\le x \le b} f(x) m=axbminf(x),则
∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x ≤ ( M + m ) 2 4 M m ( b − a ) 2 \int_{a}^{b}f(x)\mathrm{d}x\int_{a}^{b}\frac{1}{f(x)}\mathrm{d}x\le \frac{(M+m)^2}{4Mm}(b-a)^2 abf(x)dxabf(x)1dx4Mm(M+m)2(ba)2
证明:
g ( t ) = ∫ a b f ( x ) d x   t 2 − M + m m M ( b − a )   t + ∫ a b 1 f ( x ) d x = ∫ a b f ( x ) d x   t 2 − ∫ a b M + m m M t d x + ∫ a b 1 f ( x ) d x = ∫ a b ( f ( x ) t 2 − M + m m M t + 1 f ( x ) ) d x = ∫ a b m M f 2 ( x ) t 2 − ( M + m ) f ( x ) t + m M m M f ( x ) d x = ∫ a b t 2 ( f ( x ) − 1 M t ) ( f ( x ) − 1 m t ) f ( x ) d x \begin{aligned} g(t)&=\int_{a}^{b}f(x)\mathrm{d}x\ t^2-\frac{M+m}{\sqrt{mM}}(b-a)\ t+\int_{a}^{b}\frac{1}{f(x)}\mathrm{d}x\\ &=\int_{a}^{b}f(x)\mathrm{d}x\ t^2-\int_{a}^{b}\frac{M+m}{\sqrt{mM}}t\mathrm{d}x+\int_{a}^{b}\frac{1}{f(x)}\mathrm{d}x\\ &=\int_{a}^{b}(f(x)t^2-\frac{M+m}{\sqrt{mM}}t+\frac{1}{f(x)})\mathrm{d}x\\ &=\int_{a}^{b}\frac{\sqrt{mM}f^2(x)t^2-(M+m)f(x)t+\sqrt{mM}}{\sqrt{mM}f(x)}\mathrm{d}x\\ &=\int_{a}^{b}\frac{t^2(f(x)-\frac{1}{Mt})(f(x)-\frac{1}{mt})}{f(x)}\mathrm{d}x \end{aligned} g(t)=abf(x)dx t2mM M+m(ba) t+abf(x)1dx=abf(x)dx t2abmM M+mtdx+abf(x)1dx=ab(f(x)t2mM M+mt+f(x)1)dx=abmM f(x)mM f2(x)t2(M+m)f(x)t+mM dx=abf(x)t2(f(x)Mt1)(f(x)mt1)dx
1 M t = m ⇒ t = 1 M m ⇒ g ( 1 M m ) = ∫ a b ( f ( x ) − m ) ( f ( x ) − M ) ( M N ) 2 f ( x ) d x ≤ 0 \frac{1}{Mt}=m\Rightarrow t=\frac{1}{Mm}\Rightarrow g(\frac{1}{Mm})=\int_{a}^{b}\frac{(f(x)-m)(f(x)-M)}{(MN)^2f(x)}\mathrm{d}x\le 0 Mt1=mt=Mm1g(Mm1)=ab(MN)2f(x)(f(x)m)(f(x)M)dx0
g ( t ) g(t) g(t)是抛物线,开口向上,且至少有一个零点,所以 g ( t ) = 0 g(t)=0 g(t)=0的判别式 Δ = b 2 − 4 a c ≥ 0 \Delta =b^2-4ac\ge 0 Δ=b24ac0
从而
∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x ≤ ( M + m ) 2 4 M m ( b − a ) 2 \int_{a}^{b}f(x)\mathrm{d}x\int_{a}^{b}\frac{1}{f(x)}\mathrm{d}x\le \frac{(M+m)^2}{4Mm}(b-a)^2 abf(x)dxabf(x)1dx4Mm(M+m)2(ba)2

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值