赫尔德不等式详细证明

赫尔德不等式详细证明

k=1n|akbk|(k=1n|ak|p)1/p(k=1n|bk|q)1/q(1)

其中数 p>1 q>1 具有关系 :

1p+1q=1p=qp1(2)

我们可以看到不等式(1)是齐次的,这意味着对于任意两个向量 a=(a1...an) b=(b1...bn) 不等式(1) 成立,那么不等式(1)对于向量 λa μb 也成立(其中 λ μ 为任意数)因此对不等式(1)只要在:

k=1n|ak|p=k=1n|bk|q=1(3)

的情况下来证明就可以了.

补充 : λ μ 可取任意数,则总存在 λ=1nk=1|ak|p μ=1nk=1|bk|q

于是假设条件 (3) 成立;我们可以来证明

k=1n|akbk|1(4)

这里要引入 杨氏不等式

杨氏不等式证明:
f(x) = a^(x-1)
图1( ξ 取10)

我们研究由方程 η=ξp1(ξ>0) 或同样的方程 ξ=ηp1(η>0) 所确定的 (η,ξ) 平面上的曲线.由图(1)中显然可以看出,对于任意选取的正数 a b都有 S1+S2ab 我们来计算 S1 S2 的面积:

S1=a0ξp1dξ=app

S2=b0ηq1dη=bqq

于是,数的不等式
abapp+bqq(5)
成立.

以上为杨氏不等式的证明过程.
不等式(5)中的 a 换成|ak| b 换成|bk|,并且按照 k 从1到n求和,注意式(2)式(3),我们可以的到:

k=1n|akbk|1

具体详细证明过程如下:

补充:
先将 a,b 替换为 |ak|,|bk| 得到下式

k=1n|akbk|nk=1|ak|pp+nk=1|bk|qq

结合 式(3)
k=1n|akbk|1p+1q

结合 式(2)
k=1n|akbk|1

这就证明了不等式(4),也就证明了一般的赫尔德不等式.

注:证明摘自《函数论与泛函分析初步(第七版)》p29 并加入自己一些理解.

  • 15
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值