矩阵的最大秩分解

m × n m\times n m×n矩阵
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11}& a_{12}&\cdots &a_{1n}\\ a_{21}& a_{22}&\cdots & a_{2n}\\ \vdots& \vdots & & \vdots\\ a_{m1}& a_{m2}&\cdots & a_{mn}\\ \end{pmatrix} A=a11a21am1a12a22am2a1na2namn
如果当 m ≤ n m\le n mn时,存在有 r a n k   A = m rank\ A=m rank A=m;或者当 m ≥ n m\ge n mn时,存在 r a n k   A = n rank\ A=n rank A=n,则称这两种长方阵为最大秩长方阵满秩长方阵),前者又称行最大秩长方阵行满秩矩阵矮矩阵),后者又称为列最大值矩阵列满秩矩阵高矩阵
显然最大秩长方阵具有以下性质
r a n k ( A A T ) = m , A = ( a i j ) m × n , m ≤ n rank(AA^T)=m,A=(a_{ij})_{m\times n},m\le n rank(AAT)=m,A=(aij)m×n,mn
或者
r a n k ( A T A ) = n , A = ( a i j ) m × n , m ≥ n rank(A^TA)=n,A=(a_{ij})_{m\times n},m\ge n rank(ATA)=n,A=(aij)m×n,mn

证明:
A A T x = 0 ⇒ x T A A T x = 0 ⇒ ∥ A T x ∥ 2 2 = 0 ⇒ A T x = 0 AA^T x=0\Rightarrow x^T A A^T x=0\Rightarrow \Vert A^T x \Vert_2^2 =0\Rightarrow A^T x=0 AATx=0xTAATx=0ATx22=0ATx=0
所以首位两个方程组同解,所以成立

最大值分解

定义

A A A m × n m\times n m×n且秩 r > 0 r>0 r>0的复矩阵,且记为 A ∈ C r m × n A\in \mathbb{C}_r^{m\times n} ACrm×n
如果存在矩阵 B ∈ C r m × r , C ∈ C r r × n B\in \mathbb{C}_r^{m\times r},C\in \mathbb{C}_r^{r\times n} BCrm×r,CCrr×n,使得
A = B C A=BC A=BC
则称这种分解为矩阵 A A A的最大秩分解(满秩分解)

如果 A A A列满秩或者行满秩,则分解的两个因子中,其中一个为单位矩阵,称这种最大秩分解为平凡分解

存在性

A ∈ C r m × n A\in \mathbb{C}_r^{m\times n} ACrm×n,则一定存在 B ∈ C r m × r , C ∈ C r r × n B\in \mathbb{C}_r^{m\times r},C\in \mathbb{C}_r^{r\times n} BCrm×r,CCrr×n,使得
A = B C A=BC A=BC

证明:
A A A进行行初等变换,化为行标准型 A ~ r \widetilde{A}_r A r
A ~ r = ( 0 ⋯ 0 1 ∗ ⋯ ∗ 0 ∗ ⋯ ∗ 0 ∗ ⋯ ∗ 0 ⋯ 0 0 0 ⋯ 0 1 ∗ ⋯ ∗ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 1 ∗ ⋯ ∗ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 ) \widetilde{A}_r= \begin{pmatrix} 0&\cdots &0&1&*&\cdots &*&0&*&\cdots &*&0&*&\cdots &*\\ 0&\cdots &0&0&0&\cdots &0&1&*&\cdots &*&0&*&\cdots &*\\ \vdots& &\vdots&\vdots&\vdots& &\vdots&\vdots&&&&\vdots&&\vdots&\vdots\\ 0&\cdots &0&0&0&\cdots &0&0&0&\cdots &0&1&*&\cdots &*\\ 0&\cdots &0&0&0&\cdots &0&0&0&\cdots &0&0&0&\cdots &0\\ \vdots& &\vdots&\vdots&\vdots& &\vdots&\vdots&&&&\vdots&&\vdots&\vdots\\ 0&\cdots &0&0&0&\cdots &0&0&0&\cdots &0&0&0&\cdots &0\\ \end{pmatrix} A r=0000000000100000000000001000000000001000000
(前 r r r行非零,后 m − r m-r mr行全零)

其中 ∗ * 表示不一定为 0 0 0元素,在 A ~ r \widetilde{A}_r A r中第 k j k_j kj列的元素除第 j j j个元素为 1 1 1外,其余元素均为 0 ( 1 ≤ j ≤ r ) 0(1\le j \le r) 0(1jr)

显然 A ~ r \tilde{A}_r A~r的第 k 1 , k 2 , ⋯   , k r k_1,k_2,\cdots, k_r k1,k2,,kr,则 A A A的第 k 1 , k 2 , ⋯   , k r k_1,k_2,\cdots, k_r k1,k2,,kr列也是线性无关的,因此,保留 A A A的第 k 1 , k 2 , ⋯   , k r k_1,k_2,\cdots, k_r k1,k2,,kr列而其他各列都除去,所得的矩阵记为 B B B,则 B B B是具有最大秩的 m × r m\times r m×r阶矩阵

A ~ r \widetilde{A}_r A r的第 j j j列可以表示为
α ~ j = ( c j 1 , ⋯   , c j p , 0 , ⋯   , 0 ) T \widetilde{\alpha}_j=(c_{j1},\cdots,c_{jp},0,\cdots,0)^T α j=(cj1,,cjp,0,,0)T
其中后 m − p m-p mp个元素为0
α ~ j = c j 1 α ~ k 1 + ⋯ + c j p α ~ k p \widetilde{\alpha}_j=c_{j1}\widetilde{\alpha}_{k_1}+\cdots+c_{jp}\widetilde{\alpha}_{k_p} α j=cj1α k1++cjpα kp
于是
α j = c j 1 α k 1 + ⋯ + c j p α k p \alpha_j=c_{j1}\alpha_{k_1}+\cdots+c_{jp}\alpha_{k_p} αj=cj1αk1++cjpαkp

设除了位于 A ~ r \widetilde{A}_r A r下侧 m − r m-r mr 0 0 0行以外的 r × n r\times n r×n阶矩阵为 C C C,显然 C C C行满秩
于是
A = B C A=BC A=BC

其实这个证明过程就给出了最大秩分解的求法,先化为行标准型,找到 A A A中对应 1 1 1的那几列,作为 B B B,然后把行标准型的前 r r r行作为 C C C

如果用列变换,其实也类似
所以其实最大秩分解是不唯一的

两个最大秩分解之间的关系

A ∈ C r m × n A\in \mathbb{C}_r^{m\times n} ACrm×n,且
A = B C = B ~ C ~ A=BC=\widetilde{B}\widetilde{C} A=BC=B C
均为 A A A的最大秩分解,则
(1)
存在矩阵 Q ∈ C r r × r Q\in \mathbb{C}_r^{r\times r} QCrr×r,使得
B = B ~ Q , C = Q − 1 C ~ B=\widetilde{B}Q,C=Q^{-1}\widetilde{C} B=B Q,C=Q1C
(2)
C H ( C C H ) − 1 ( B H B ) − 1 B H = C ~ H ( C ~ C ~ H ) − 1 ( B ~ B ~ H ) − 1 B ~ H C^{H}(CC^H)^{-1}(B^H B)^{-1}B^H=\widetilde{C}^H(\widetilde{C}\widetilde{C}^H)^{-1}(\widetilde{B}\widetilde{B}^H)^{-1}\widetilde{B}^H CH(CCH)1(BHB)1BH=C H(C C H)1(B B H)1B H

证明:
(1)
B C = B ~ C ~ B C C H = B ~ C ~ C H B = B ~ C ~ C H ( C C H ) − 1 B = B ~ Q 1 \begin{aligned} BC&=\widetilde{B}\widetilde{C}\\ BCC^H&=\widetilde{B}\widetilde{C}C^H\\ B&=\widetilde{B}\widetilde{C}C^H(CC^H)^{-1}\\ B&=\widetilde{B}Q_1 \end{aligned} BCBCCHBB=B C =B C CH=B C CH(CCH)1=B Q1
Q 1 = C ~ C H ( C C H ) − 1 Q_1=\widetilde{C}C^H(CC^H)^{-1} Q1=C CH(CCH)1
同理可得
C = ( B H B ) − 1 B H B ~ C ~ = Q 2 C ~ C=(B^H B)^{-1}B^H \widetilde{B}\widetilde{C}=Q_2\widetilde{C} C=(BHB)1BHB C =Q2C
Q 2 = ( B H B ) − 1 B H B ~ Q_2=(B^H B)^{-1}B^H \widetilde{B} Q2=(BHB)1BHB
B C = B ~ C ~ B ~ C ~ = B ~ Q 1 Q 2 C ~ B ~ H B ~ C ~ C ~ H = B ~ H B ~ Q 1 Q 2 C ~ C ~ H I = Q 1 Q 2 \begin{aligned} BC&=\widetilde{B}\widetilde{C}\\ \widetilde{B}\widetilde{C}&=\widetilde{B}Q_1 Q_2\widetilde{C}\\ \widetilde{B}^H\widetilde{B}\widetilde{C}\widetilde{C}^H&=\widetilde{B}^H\widetilde{B}Q_1 Q_2\widetilde{C}\widetilde{C}^H\\ I&=Q_1 Q_2 \end{aligned} BCB C B HB C C HI=B C =B Q1Q2C =B HB Q1Q2C C H=Q1Q2
Q = Q 1 Q=Q_1 Q=Q1,即成立
(2)
C H ( C C H ) − 1 ( B H B ) − 1 B H = ( Q − 1 C ~ ) H ( Q − 1 C ~ ( Q − 1 C ~ ) H ) − 1 ( ( B ~ Q ) H B ~ Q ) − 1 ( B ~ Q ) H = C ~ H ( Q − 1 ) H ( Q − 1 ( C ~ C ~ H ) ( Q − 1 ) H ) − 1 ( Q H ( B ~ H B ~ ) Q ) − 1 Q H B ~ H = C ~ H ( Q − 1 ) H ( ( Q − 1 ) H ) − 1 ( C ~ C ~ H ) − 1 Q Q − 1 ( B ~ H B ~ ) − 1 ( Q H ) − 1 Q H B ~ H = C ~ H ( C ~ C ~ H ) − 1 ( B ~ H B ~ ) − 1 B ~ H \begin{aligned} &\quad C^H(CC^H)^{-1}(B^HB)^{-1}B^H\\ &=(Q^{-1}\widetilde{C})^H(Q^{-1}\widetilde{C} (Q^{-1}\widetilde{C})^H)^{-1}((\widetilde{B}Q)^H\widetilde{B}Q)^{-1}(\widetilde{B}Q)^H\\ &=\widetilde{C}^H (Q^{-1})^H (Q^{-1}( \widetilde{C}\widetilde{C}^H)(Q^{-1})^H)^{-1}(Q^H(\widetilde{B}^H \widetilde{B}) Q)^{-1}Q^H \widetilde{B}^H\\ &=\widetilde{C}^H (Q^{-1})^H ((Q^{-1})^H )^{-1}( \widetilde{C}\widetilde{C}^H)^{-1}QQ^{-1}(\widetilde{B}^H \widetilde{B})^{-1}(Q^H)^{-1}Q^H\widetilde{B}^H\\ &=\widetilde{C}^H ( \widetilde{C}\widetilde{C}^H)^{-1}(\widetilde{B}^H \widetilde{B})^{-1}\widetilde{B}^H \end{aligned} CH(CCH)1(BHB)1BH=(Q1C )H(Q1C (Q1C )H)1((B Q)HB Q)1(B Q)H=C H(Q1)H(Q1(C C H)(Q1)H)1(QH(B HB )Q)1QHB H=C H(Q1)H((Q1)H)1(C C H)1QQ1(B HB )1(QH)1QHB H=C H(C C H)1(B HB )1B H

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值