KKT条件学习

不等式约束问题

 (P)  min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m \begin{array}{lll} \text { (P) } & \min & f(\mathbf{x}) \\ & \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, & i=1,2, \ldots, m \end{array}  (P) min s.t. f(x)gi(x)0,i=1,2,,m
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm是在 R n \mathbb{R}^n Rn连续可微的函数

可行下降方向

min ⁡ b ( x )  s.t.  x ∈ C \begin{array}{ll} \min & b(\mathbf{x}) \\ \text { s.t. } & \mathbf{x} \in C \end{array} min s.t. b(x)xC
其中 h h h是在闭凸集 C ⊆ R n \mathbf{C}\subseteq \mathbb{R}^n CRn上连续可微的函数。
设向量 d ≠ 0 \mathbf{d}\neq 0 d=0 x ∈ C \mathbf{x}\in\mathbf{C} xC
如果 ∇ h ( x ) T d < 0 \nabla h(\mathbf{x})^T\mathbf{d}<0 h(x)Td<0,并且存在 ϵ > 0 \epsilon>0 ϵ>0使得 ∀ t ∈ [ 0 , ϵ ] , x + t d ∈ C \forall t\in\left[0,\epsilon\right],\mathbf{x}+t\mathbf{d}\in \mathbf{C} t[0,ϵ],x+tdC
d \mathbf{d} d是在 x \mathbf{x} x点的可行下降方向

引理1

考虑问题
 (G)  min ⁡ h ( x )  s.t.  x ∈ C . \begin{array}{lll} \text { (G) } & \min & h(\mathbf{x}) \\ & \text { s.t. } & \mathbf{x} \in C . \end{array}  (G) min s.t. h(x)xC.
如果 x ∗ \mathbf{x}^* x是一个局部最优解,则在 x ∗ \mathbf{x}^* x没有可行下降方向

证明:
假设有下降方向,则存在 d ≠ 0 , ϵ 1 > 0 \mathbf{d}\neq 0,\epsilon_1>0 d=0,ϵ1>0
∀ t ∈ [ 0 , ϵ 1 ] , x ∗ + t d ∈ C , ∇ f ( x ) T d < 0 \forall t \in \left[0,\epsilon_1\right],\mathbf{x}^*+t\mathbf{d}\in\mathbf{C},\nabla f(\mathbf{x})^T\mathbf{d}<0 t[0,ϵ1],x+tdC,f(x)Td<0
根据下降方向的性质
∃ ϵ 2 < ϵ 1 , ∀ t ∈ [ 0 , ϵ 2 ] , f ( x ∗ + t d ) < f ( x ∗ ) \exists \epsilon_2<\epsilon_1,\forall t\in\left[0,\epsilon_2\right],f(\mathbf{x}^*+t\mathbf{d})<f(\mathbf{x}^*) ϵ2<ϵ1,t[0,ϵ2],f(x+td)<f(x)
和局部最优矛盾了

引理2

x ∗ \mathbf{x}^* x
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \end{array} min s.t. f(x)gi(x)0,i=1,2,,m
的局部最优解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm R n \mathbb{R}^n Rn上连续可微的函数

I ( x ∗ ) = { i : g i ( x ∗ ) = 0 } I(\mathbf{x}^*)=\left\{i: g_i(\mathbf{x}^*)=0\right\} I(x)={i:gi(x)=0}
则不存在 d ∈ R n \mathbf{d}\in\mathbb{R}^n dRn,使得
∇ f ( x ∗ ) T d < 0 , ∇ g i ( x ∗ ) T d < 0 , i ∈ I ( x ∗ ) \begin{aligned} &\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \\ &\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \quad i \in I\left(\mathbf{x}^{*}\right) \end{aligned} f(x)Td<0,gi(x)Td<0,iI(x)
证明:
假设存在 d \mathbf{d} d使得
∇ f ( x ∗ ) T d < 0 , ∇ g i ( x ∗ ) T d < 0 , i ∈ I ( x ∗ ) \begin{aligned} &\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \\ &\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \quad i \in I\left(\mathbf{x}^{*}\right) \end{aligned} f(x)Td<0,gi(x)Td<0,iI(x)
那么存在 ϵ 1 > 0 \epsilon_1>0 ϵ1>0 ∀ t ∈ ( 0 , ϵ 1 ) , i ∈ I ( x ∗ ) \forall t \in (0,\epsilon_1),i\in I(\mathbf{x}^*) t(0,ϵ1),iI(x)
使得 f ( x ∗ + t d ) < f ( x ∗ ) f(\mathbf{x}^*+t\mathbf{d})<f(\mathbf{x}^*) f(x+td)<f(x)以及 g i ( x ∗ + t d ) < g i ( x ∗ ) = 0 g_i(\mathbf{x}^*+t\mathbf{d})<g_i(\mathbf{x}^*)=0 gi(x+td)<gi(x)=0

对于 i ∉ I ( x ∗ ) i\notin I(\mathbf{x}^*) i/I(x),有 g i ( x ∗ ) < 0 g_i(\mathbf{x}^*)<0 gi(x)<0
因此 ∃ ϵ 2 > 0 , ∀ t ∈ ( 0 , ϵ 2 ) , i ∉ I ( x ∗ ) \exists \epsilon_2>0,\forall t\in (0,\epsilon_2),i\notin I(\mathbf{x}^*) ϵ2>0,t(0,ϵ2),i/I(x),有 g i ( x ∗ + t d ) < 0 g_i(\mathbf{x}^*+t\mathbf{d})<0 gi(x+td)<0

所以 ∀ t ∈ ( 0 , min ⁡ { ϵ 1 , ϵ 2 } ) \forall t\in \left(0,\min \left\{\epsilon_1,\epsilon_2\right\}\right) t(0,min{ϵ1,ϵ2}),有
f ( x ∗ + t d ) < f ( x ∗ ) g i ( x ∗ + t d ) < 0 , i = 1 , 2 , … , m , \begin{aligned} &f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right) \\ &g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<0, \quad i=1,2, \ldots, m, \end{aligned} f(x+td)<f(x)gi(x+td)<0,i=1,2,,m,
x ∗ \mathbf{x}^* x局部最优解矛盾

不等式约束问题的Fritz-John条件

x ∗ \mathbf{x}^* x
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \end{array} min s.t. f(x)gi(x)0,i=1,2,,m
的局部最优解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm R n \mathbb{R}^n Rn上连续可微的函数
则存在不全为0的 λ 0 , λ 1 , ⋯   , λ m ≥ 0 \lambda_0,\lambda_1,\cdots,\lambda_m\ge 0 λ0,λ1,,λm0,使得
λ 0 ∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} λ0f(x)+i=1mλigi(x)λigi(x)=0,=0,i=1,2,,m
证明:
由引理2
不存在 d \mathbf{d} d使得
∇ f ( x ∗ ) T d < 0 , ∇ g i ( x ∗ ) T d < 0 , i ∈ I ( x ∗ ) \begin{aligned} &\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \\ &\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \quad i \in I\left(\mathbf{x}^{*}\right) \end{aligned} f(x)Td<0,gi(x)Td<0,iI(x)
其中 I ( x ∗ ) = { i : g i ( x ∗ ) } = { i 1 , i 2 , ⋯   , i k } I(\mathbf{x}^*)=\left\{i:g_i(\mathbf{x}^*)\right\}=\left\{i_1,i_2,\cdots,i_k\right\} I(x)={i:gi(x)}={i1,i2,,ik}
这个等价于
A d < 0 \mathbf{Ad}<0 Ad<0
无解
其中
A = ( ∇ f ( x ∗ ) T ∇ g i 1 ( x ∗ ) T ⋮ ∇ g i k ( x ∗ ) T ) \mathbf{A}=\left(\begin{array}{c} \nabla f\left(\mathbf{x}^{*}\right)^{T} \\ \nabla g_{i_{1}}\left(\mathbf{x}^{*}\right)^{T} \\ \vdots \\ \nabla g_{i_{k}}\left(\mathbf{x}^{*}\right)^{T} \end{array}\right) A=f(x)Tgi1(x)Tgik(x)T
根据Gordan定理,
无解等价于存在 η = ( λ 0 , ⋯   , λ i k ) T ≠ 0 \eta=\left(\lambda_0,\cdots,\lambda_{i_k}\right)^T\neq 0 η=(λ0,,λik)T=0,使得
A T η = 0 , η ≥ 0 \mathrm{A}^{T} \eta=0, \quad \eta \geq 0 ATη=0,η0
于是
λ 0 ∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} λ0f(x)+i=1mλigi(x)λigi(x)=0,=0,i=1,2,,m

不等式约束问题的KKT条件

x ∗ \mathbf{x}^* x
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \end{array} min s.t. f(x)gi(x)0,i=1,2,,m
的局部最优解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm R n \mathbb{R}^n Rn上连续可微的函数

I ( x ∗ ) = { i : g i ( x ∗ ) = 0 } I(\mathbf{x}^*)=\left\{i:g_i(\mathbf{x}^*)=0\right\} I(x)={i:gi(x)=0}
{ ∇ g i ( x ∗ ) } i ∈ I ( x ∗ ) \left\{\nabla g_i(\mathbf{x}^*)\right\}_{i\in I(\mathbf{x}^*)} {gi(x)}iI(x)线性无关
则存在 λ 1 , ⋯   , λ m ≥ 0 \lambda_1,\cdots,\lambda_m\ge 0 λ1,,λm0,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} f(x)+i=1mλigi(x)λigi(x)=0,=0,i=1,2,,m
证明:
根据Fritz-John条件,存在不全为0的 λ 0 ~ , ⋯   , λ m ~ ≥ 0 \tilde{\lambda_0},\cdots,\tilde{\lambda_m}\ge 0 λ0~,,λm~0
使得 λ 0 ~ ∇ f ( x ∗ ) + ∑ i = 1 m λ i ~ ∇ g i ( x ∗ ) = 0 , λ i ~ g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \tilde{\lambda_0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda_i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \tilde{\lambda_i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} λ0~f(x)+i=1mλi~gi(x)λi~gi(x)=0,=0,i=1,2,,m
如果 λ 0 ~ = 0 \tilde{\lambda_0}=0 λ0~=0,则 λ i ~ = 0 \tilde{\lambda_i}=0 λi~=0,与 { ∇ g i ( x ∗ ) } i ∈ I ( x ∗ ) \left\{\nabla g_i(\mathbf{x}^*)\right\}_{i\in I(\mathbf{x}^*)} {gi(x)}iI(x)线性无关
所以令 λ i = λ i ~ λ 0 ~ \lambda_i=\frac{\tilde{\lambda_i}}{\tilde{\lambda_0}} λi=λ0~λi~
得证

不等式与等式约束问题

不等式与等式约束问题的KKT条件

x ∗ \mathbf{x}^* x是问题
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m h j ( x ) = 0 , j = 1 , 2 , … , p \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \\ & h_{j}(\mathbf{x})=0, \quad j=1,2, \ldots, p \end{array} min s.t. f(x)gi(x)0,i=1,2,,mhj(x)=0,j=1,2,,p
的局部最优解,
其中 f , g 1 , ⋯   , g m , h 1 , ⋯   , h p f,g_1,\cdots,g_m,h_1,\cdots,h_p f,g1,,gm,h1,,hp是在 R n \mathbb{R}^n Rn上连续可微的函数
假设
{ ∇ g i ( x ∗ ) : i ∈ I ( x ∗ ) } ∪ { ∇ h j ( x ∗ ) : j = 1 , 2 , … , p } \left\{\nabla g_{i}\left(\mathbf{x}^{*}\right): i \in I\left(\mathbf{x}^{*}\right)\right\} \cup\left\{\nabla h_{j}\left(\mathbf{x}^{*}\right): j=1,2, \ldots, p\right\} {gi(x):iI(x)}{hj(x):j=1,2,,p}
线性无关
其中 I ( x ∗ ) = { i : g i ( x ∗ ) = 0 } I(\mathbf{x}^*)=\left\{i:g_i(\mathbf{x}^*)=0\right\} I(x)={i:gi(x)=0}
则存在 λ 1 , ⋯   , λ m ≥ 0 \lambda_1,\cdots,\lambda_m\ge 0 λ1,,λm0 μ 1 , ⋯   , μ p ∈ R \mu_1,\cdots,\mu_p\in \mathbb{R} μ1,,μpR,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ j = 1 p μ j ∇ h j ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} f(x)+i=1mλigi(x)+j=1pμjhj(x)λigi(x)=0,=0,i=1,2,,m

KKT点

一个可行解 x ∗ \mathbb{x}^* x
如果存在 λ 1 , ⋯   , λ m ≥ 0 \lambda_1,\cdots,\lambda_m\ge 0 λ1,,λm0 μ 1 , ⋯   , μ p ∈ R \mu_1,\cdots,\mu_p\in \mathbb{R} μ1,,μpR,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ j = 1 p μ j ∇ h j ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} f(x)+i=1mλigi(x)+j=1pμjhj(x)λigi(x)=0,=0,i=1,2,,m
x ∗ \mathbf{x}^* x称为KKT点

规范(regularity)

一个可行解 x ∗ \mathbf{x}^* x
如果 { ∇ g i ( x ∗ ) : i ∈ I ( x ∗ ) } ∪ { ∇ h j ( x ∗ ) : j = 1 , 2 , … , p } \left\{\nabla g_{i}\left(\mathbf{x}^{*}\right): i \in I\left(\mathbf{x}^{*}\right)\right\} \cup\left\{\nabla h_{j}\left(\mathbf{x}^{*}\right): j=1,2, \ldots, p\right\} {gi(x):iI(x)}{hj(x):j=1,2,,p}
线性无关,则称为规范(regularity)

凸的条件下

凸优化问题中KKT条件的充分性

x ∗ \mathbf{x}^* x是问题
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m h j ( x ) = 0 , j = 1 , 2 , … , p \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \\ & h_{j}(\mathbf{x})=0, \quad j=1,2, \ldots, p \end{array} min s.t. f(x)gi(x)0,i=1,2,,mhj(x)=0,j=1,2,,p
的一个可行解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm是在 R n \mathbb{R}^n Rn上连续可微的凸函数
h 1 , ⋯   , h p h_1,\cdots,h_p h1,,hp是仿射函数
如果存在 λ 1 , ⋯   , λ m ≥ 0 \lambda_1,\cdots,\lambda_m\ge 0 λ1,,λm0 μ 1 , ⋯   , μ p ∈ R \mu_1,\cdots,\mu_p\in \mathbb{R} μ1,,μpR,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ j = 1 p μ j ∇ h j ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} f(x)+i=1mλigi(x)+j=1pμjhj(x)λigi(x)=0,=0,i=1,2,,m
x ∗ \mathbf{x}^* x是最优解
证明:
s ( x ) = f ( x ) + ∑ i = 1 m λ i g i ( x ) + ∑ j = 1 p μ j h j ( x ) s(\mathbf{x})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) s(x)=f(x)+i=1mλigi(x)+j=1pμjhj(x)
∇ s ( x ∗ ) = 0 \nabla s(\mathbf{x}^*)=0 s(x)=0,所以 s ( x ∗ ) ≤ s ( x ) s(\mathbf{x}^*)\le s(\mathbf{x}) s(x)s(x)
所以
f ( x ∗ ) = f ( x ∗ ) + ∑ i = 1 m λ i g i ( x ∗ ) + ∑ j = 1 p μ j h j ( x ∗ ) = s ( x ∗ ) ≤ s ( x ) = f ( x ) + ∑ i = 1 m λ i g i ( x ) + ∑ j = 1 p μ j h j ( x ) ≤ f ( x ) \begin{aligned} f\left(\mathbf{x}^{*}\right) &=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} h_{j}\left(\mathbf{x}^{*}\right) \\ &=s\left(\mathbf{x}^{*}\right) \\ & \leq s(\mathbf{x}) \\ &=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) \\ & \leq f(\mathbf{x}) \end{aligned} f(x)=f(x)+i=1mλigi(x)+j=1pμjhj(x)=s(x)s(x)=f(x)+i=1mλigi(x)+j=1pμjhj(x)f(x)

不等式约束问题中KKT条件下Slater条件的必要性

x ∗ \mathbf{x}^* x
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \end{array} min s.t. f(x)gi(x)0,i=1,2,,m
的局部最优解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm R n \mathbb{R}^n Rn上连续可微的函数,
并且 g 1 , ⋯   , g m g_1,\cdots,g_m g1,,gm是凸函数
假设存在 x ^ ∈ R n \hat{\mathbf{x}}\in \mathbb{R}^n x^Rn,使得
g i ( x ^ ) < 0 , i = 1 , 2 , … , m g_{i}(\hat{\mathbf{x}})<0, \quad i=1,2, \ldots, m gi(x^)<0,i=1,2,,m
则存在 λ 1 , ⋯   , λ m ≥ 0 \lambda_1,\cdots,\lambda_m\ge 0 λ1,,λm0,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} f(x)+i=1mλigi(x)λigi(x)=0,=0,i=1,2,,m
证明:
因为 x ∗ \mathbf{x}^* x是局部最优解,所以一定满足Fritz-John条件
即存在不全为0的 λ 0 , λ 1 , ⋯   , λ m ≥ 0 \lambda_0,\lambda_1,\cdots,\lambda_m\ge 0 λ0,λ1,,λm0,使得
λ 0 ∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m \begin{aligned} \lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m \end{aligned} λ0f(x)+i=1mλigi(x)λigi(x)=0,=0,i=1,2,,m

假设 λ 0 = 0 \lambda_0=0 λ0=0,则
∑ i = 1 m λ ~ i ∇ g i ( x ∗ ) = 0 \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=0 i=1mλ~igi(x)=0
由凸函数的一阶条件
0 > g i ( x ^ ) ≥ g i ( x ∗ ) + ∇ g i ( x ∗ ) T ( x ^ − x ∗ ) 0>g_{i}(\hat{\mathbf{x}}) \geq g_{i}\left(\mathbf{x}^{*}\right)+\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right) 0>gi(x^)gi(x)+gi(x)T(x^x)
于是
0 > ∑ i = 1 m λ ~ i g i ( x ∗ ) + [ ∑ i = 1 m λ ~ i ∇ g i ( x ∗ ) ] T ( x ^ − x ∗ ) = 0 0>\sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right)+\left[\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)\right]^{T}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right)=0 0>i=1mλ~igi(x)+[i=1mλ~igi(x)]T(x^x)=0
矛盾
所以 λ 0 > 0 \lambda_0>0 λ0>0,然后取 λ i = λ i ~ λ 0 \lambda_i=\frac{\tilde{\lambda_i}}{\lambda_0} λi=λ0λi~
得证

广义Slater条件

g i ( x ) ≤ 0 , i = 1 , 2 , … , m , h j ( x ) ≤ 0 , j = 1 , 2 , … , p , s k ( x ) = 0 , k = 1 , 2 , … , q , \begin{array}{ll} g_{i}(\mathbf{x}) \leq 0, & i=1,2, \ldots, m, \\ h_{j}(\mathbf{x}) \leq 0, & j=1,2, \ldots, p, \\ s_{k}(\mathbf{x})=0, & k=1,2, \ldots, q, \end{array} gi(x)0,hj(x)0,sk(x)=0,i=1,2,,m,j=1,2,,p,k=1,2,,q,
其中 g i g_i gi是凸函数, h j , s k h_j,s_k hj,sk是仿射函数
如果存在 x ^ ∈ R n \hat{\mathbf{x}}\in\mathbb{R}^n x^Rn,满足
g i ( x ^ ) < 0 , i = 1 , 2 , … , m , h j ( x ^ ) ≤ 0 , j = 1 , 2 , … , p , s k ( x ^ ) = 0 , k = 1 , 2 , … , q , \begin{array}{ll} g_{i}(\hat{\mathbf{x}}) < 0, & i=1,2, \ldots, m, \\ h_{j}(\hat{\mathbf{x}}) \leq 0, & j=1,2, \ldots, p, \\ s_{k}(\hat{\mathbf{x}})=0, & k=1,2, \ldots, q, \end{array} gi(x^)<0,hj(x^)0,sk(x^)=0,i=1,2,,m,j=1,2,,p,k=1,2,,q,
则满足广义Slater条件

不等式与等式约束问题的KKT条件下的广义Slater条件的必要性

x ∗ \mathbf{x}^* x是问题
min ⁡ f ( x )  s.t.  g i ( x ) ≤ 0 , i = 1 , 2 , … , m , h j ( x ) ≤ 0 , j = 1 , 2 , … , p , s k ( x ) = 0 , k = 1 , 2 , … , q , \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m, \\ & h_{j}(\mathbf{x}) \leq 0, \quad j=1,2, \ldots, p, \\ & s_{k}(\mathbf{x})=0, \quad k=1,2, \ldots, q, \end{array} min s.t. f(x)gi(x)0,i=1,2,,m,hj(x)0,j=1,2,,p,sk(x)=0,k=1,2,,q,
的最优解
其中 f , g 1 , ⋯   , g m f,g_1,\cdots,g_m f,g1,,gm是在 R n \mathbb{R}^n Rn上的连续可微凸函数, h j , s k h_j,s_k hj,sk是仿射函数
如果存在 x ^ ∈ R n \hat{\mathbf{x}}\in\mathbb{R}^n x^Rn,满足
g i ( x ^ ) < 0 , i = 1 , 2 , … , m , h j ( x ^ ) ≤ 0 , j = 1 , 2 , … , p , s k ( x ^ ) = 0 , k = 1 , 2 , … , q , \begin{array}{ll} g_{i}(\hat{\mathbf{x}}) < 0, & i=1,2, \ldots, m, \\ h_{j}(\hat{\mathbf{x}}) \leq 0, & j=1,2, \ldots, p, \\ s_{k}(\hat{\mathbf{x}})=0, & k=1,2, \ldots, q, \end{array} gi(x^)<0,hj(x^)0,sk(x^)=0,i=1,2,,m,j=1,2,,p,k=1,2,,q,
则存在 λ 1 , ⋯   , λ m , η 1 , ⋯   , η p ≥ 0 , μ 1 , ⋯   , μ q ∈ R \lambda_1,\cdots,\lambda_m,\eta_1,\cdots,\eta_p\ge 0,\mu_1,\cdots,\mu_q\in\mathbb{R} λ1,,λm,η1,,ηp0,μ1,,μqR,使得
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ j = 1 p η j ∇ h j ( x ∗ ) + ∑ k = 1 q μ k ∇ s k ( x ∗ ) = 0 , λ i g i ( x ∗ ) = 0 , i = 1 , 2 , … , m , η j h j ( x ∗ ) = 0 , j = 1 , 2 , … , p . \begin{aligned} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \eta_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)+\sum_{k=1}^{q} \mu_{k} \nabla s_{k}\left(\mathbf{x}^{*}\right) &=0, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) &=0, \quad i=1,2, \ldots, m, \\ \eta_{j} h_{j}\left(\mathbf{x}^{*}\right) &=0, \quad j=1,2, \ldots, p . \end{aligned} f(x)+i=1mλigi(x)+j=1pηjhj(x)+k=1qμksk(x)λigi(x)ηjhj(x)=0,=0,i=1,2,,m,=0,j=1,2,,p.

二阶优化条件

再说吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值