DFP算法

拟牛顿法

DFP算法

在拟牛顿法中取修正矩阵 D k \mathbf{D}_k Dk为秩2矩阵
D k = α u k u k T + β v k v k T \mathbf{D}_k=\alpha\mathbf{u}_k\mathbf{u}_k^T+\beta\mathbf{v}_k\mathbf{v}_k^T Dk=αukukT+βvkvkT
于是
( H k + α u k u k T + β v k v k T ) y k = s k \left(\mathbf{H}_k+\alpha\mathbf{u}_k\mathbf{u}_k^T+\beta\mathbf{v}_k\mathbf{v}_k^T\right)\mathbf{y}_k=\mathbf{s}_k (Hk+αukukT+βvkvkT)yk=sk
剩下懒得写了
推到和BFGS算法基本一样
B \mathbf{B} B换成 H \mathbf{H} H,然后 s \mathbf{s} s y \mathbf{y} y互换,就可以得到结果
H k + 1 = H k − H k y k y k T H k y k T H k y k + s k s k T s k T y k \mathbf{H}_{k+1}=\mathbf{H}_k-\frac{\mathbf{H}_k\mathbf{y}_k\mathbf{y}_k^T\mathbf{H}_k}{\mathbf{y}_k^T\mathbf{H}_k\mathbf{y}_k}+\frac{\mathbf{s}_k\mathbf{s}_k^T}{\mathbf{s}_k^T\mathbf{y}_k} Hk+1=HkykTHkykHkykykTHk+skTykskskT
B k + 1 = B k − y k s k T B k y k T s k − B k s k y k T y k T s k + y k s k T B k s k y k T ( y k T s k ) 2 + y k y k T y k T s k = ( I − s k y k T y k T s k ) T B k ( I − s k y k T y k T s k ) + y k y k T y k T s k \begin{aligned} \mathbf{B}_{k+1}&=\mathbf{B}_k-\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\left(\mathbf{y}_k^T\mathbf{s}_k\right)^2}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\\ &=\left(\mathbf{I}-\frac{\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)^T\mathbf{B}_{k}\left(\mathbf{I}-\frac{\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k} \end{aligned} Bk+1=BkykTskykskTBkykTskBkskykT+(ykTsk)2ykskTBkskykT+ykTskykykT=(IykTskskykT)TBk(IykTskskykT)+ykTskykykT

性质

性质1

H k \mathbf{H}_k Hk对称正定, H k + 1 \mathbf{H}_{k+1} Hk+1由DFP校正公式确定,则 H k + 1 \mathbf{H}_{k+1} Hk+1对称正定的充要条件是 s k T y k > 0 \mathbf{s}_k^T \mathbf{y}_k>0 skTyk>0
证明:
和BFGS那篇一样

性质2

DFP中采用精确线搜索或者Wolfe搜索准则,则有 s k T y k > 0 \mathbf{s}_k^T\mathbf{y}_k>0 skTyk>0

尽管Armijo准则(回溯法)一般不能保证 s k T y k > 0 \mathbf{s}_k^T\mathbf{y}_k>0 skTyk>0
但是因为简单,所以可以采用
H k + 1 = { H k , s k T y k ≤ 0 H k + 1 = H k − H k y k y k T H k y k T B k y k + s k s k T s k T y k s k T y k > 0 \mathbf{H}_{k+1}=\begin{cases} \mathbf{H}_k,&\mathbf{s}_k^T\mathbf{y}_k\le 0\\ \mathbf{H}_{k+1}=\mathbf{H}_k-\frac{\mathbf{H}_k\mathbf{y}_k\mathbf{y}_k^T\mathbf{H}_k}{\mathbf{y}_k^T\mathbf{B}_k\mathbf{y}_k}+\frac{\mathbf{s}_k\mathbf{s}_k^T}{\mathbf{s}_k^T\mathbf{y}_k}&\mathbf{s}_k^T\mathbf{y}_k>0 \end{cases} Hk+1={Hk,Hk+1=HkykTBkykHkykykTHk+skTykskskTskTyk0skTyk>0
只要 B 0 \mathbf{B}_0 B0时正定的, B k + 1 \mathbf{B}_{k+1} Bk+1也是正定的

步骤

初始化:选择起点 x 0 \mathbf{x}_0 x0,
选择 H 0 \mathbf{H}_0 H0(一般取 ∇ − 2 f ( x 0 ) \nabla^{-2} f\left(\mathbf{x}_0\right) 2f(x0)或者 I \mathbf{I} I )

步骤
1.若 ∥ g k ∥ ≤ ϵ \|\mathbf{g}_k\|\le \epsilon gkϵ,停止,输出 x k \mathbf{x}_k xk
2.计算 d k = − H k g k \mathbf{d}_k=-\mathbf{H}_k\mathbf{g}_k dk=Hkgk
3.求步长 α k \alpha_k αk
4. x k + 1 = x k + α k d k \mathbf{x}_{k+1}=\mathbf{x}_k+\alpha_k\mathbf{d}_k xk+1=xk+αkdk,矫正 H k \mathbf{H}_{k} Hk得到 H k + 1 \mathbf{H}_{k+1} Hk+1
5.k=k+1,转1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值