Min-max theorem

瑞利商

A \mathbf{A} A是厄尔米特矩阵 ( A = A H (\mathbf{A}=\mathbf{A}^H (A=AH)
R A ( x ) : C n \ { 0 } → R R_{\mathbf{A}}\left(\mathbf{x}\right):\mathbb{C}^n\backslash\left\{\mathbf{0}\right\}\to\mathbb{R} RA(x):Cn\{0}R定义为
R A = ( A x , x ) ( x , x ) R_{\mathbf{A}}=\frac{\left(\mathbf{Ax},\mathbf{x}\right)}{\left(\mathbf{x},\mathbf{x}\right)} RA=(x,x)(Ax,x)

Min-max theorem

A \mathbf{A} A是厄尔米特矩阵
A \mathbf{A} A的特征值为 λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n \lambda_1\le \lambda_2\le \cdots\le\lambda_n λ1λ2λn

λ k = min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}
λ k = max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

证明:
因为 A \mathbf{A} A是厄尔米特矩阵,所以可以对角化
A \mathbf{A} A两两正交的单位特征向量为 u 1 , ⋯   , u n \mathbf{u}_1,\cdots,\mathbf{u}_n u1,,un
A u i = λ i u i , ( u i , u j ) = 0 , ( u i u i ) = 1 \mathbf{A}\mathbf{u}_i=\lambda_i\mathbf{u}_i,\left(\mathbf{u}_i,\mathbf{u}_j\right)=0,\left(\mathbf{u}_i\mathbf{u}_i\right)=1 Aui=λiui,(ui,uj)=0,(uiui)=1其中 i ≠ j i\neq j i=j

先证明第一个等式
dim ⁡ ( U ) = k \operatorname{dim}\left(\mathbf{U}\right)=k dim(U)=k
dim ⁡ ( U ) + dim ⁡ ( span ⁡ { u k , ⋯   , u n } ) = k + n − k + 1 = n + 1 > n \operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\right)=k+n-k+1=n+1>n dim(U)+dim(span{uk,,un})=k+nk+1=n+1>n
所以
U ∩ span ⁡ { u k , ⋯   , u n } ≠ { 0 } \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\neq\left\{\mathbf{0}\right\} Uspan{uk,,un}={0}
所以存在 v ≠ 0 \mathbf{v}\neq 0 v=0
使得 v ∈ U ∩ span ⁡ { u k , ⋯   , u n } \mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} vUspan{uk,,un}

v = ∑ i = k n α i u i \mathbf{v}=\sum_{i=k}^n \alpha_i\mathbf{u}_i v=i=knαiui

R A ( v ) = ∑ i = k n λ i α i 2 ∑ i = k n α i 2 ≥ λ k R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=k}^n\lambda_i\alpha_i^2}{\sum_{i=k}^n\alpha_i^2}\ge \lambda_k RA(v)=i=knαi2i=knλiαi2λk
所以
max ⁡ { R A ( x ) ∣ x ∈ U } ≥ R A ( v ) ≥ λ k \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\ge R_{\mathbf{A}}\left(\mathbf{v}\right)\ge \lambda_k max{RA(x)xU}RA(v)λk

因为对于任意的 U \mathbf{U} U都是成立的
所以
min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } ≥ λ k \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\ge \lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}λk

接着证明反过来的
V = span ⁡ { u 1 , ⋯   , u k } \mathbf{V}=\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\} V=span{u1,,uk}

max ⁡ { R A ( x ) ∣ x ∈ V } ≤ λ k \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k max{RA(x)xV}λk
于是
min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } ≤ max ⁡ { R A ( x ) ∣ x ∈ V } ≤ λ k \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\le \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}max{RA(x)xV}λk
所以
λ k = min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}

接着证明第二个等式
dim ⁡ ( U ) = n − k + 1 \operatorname{dim}\left(\mathbf{U}\right)=n-k+1 dim(U)=nk+1
dim ⁡ ( U ) + dim ⁡ ( span ⁡ { u 1 , ⋯   , u k } ) = n − k + 1 + k = n + 1 > n \operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\right)=n-k+1+k=n+1>n dim(U)+dim(span{u1,,uk})=nk+1+k=n+1>n
所以
U ∩ span ⁡ { u 1 , ⋯   , u k } ≠ { 0 } \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\neq\left\{\mathbf{0}\right\} Uspan{u1,,uk}={0}
所以存在 v ≠ 0 \mathbf{v}\neq 0 v=0
使得 v ∈ U ∩ span ⁡ { u k , ⋯   , u n } \mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} vUspan{uk,,un}
v = ∑ i = 1 k α i u i \mathbf{v}=\sum_{i=1}^k \alpha_i\mathbf{u}_i v=i=1kαiui

R A ( v ) = ∑ i = 1 k λ i α i 2 ∑ i = 1 k α i 2 ≤ λ k R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=1}^k\lambda_i\alpha_i^2}{\sum_{i=1}^k\alpha_i^2}\le \lambda_k RA(v)=i=1kαi2i=1kλiαi2λk
所以
min ⁡ { R A ( x ) ∣ x ∈ U } ≤ R A ( v ) ≤ λ k \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\le R_{\mathbf{A}}\left(\mathbf{v}\right)\le \lambda_k min{RA(x)xU}RA(v)λk
因为对于任意的 U \mathbf{U} U都是成立的
所以
max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } ≤ λ k \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\le \lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}λk

接着证明反过来的
V = span ⁡ { u k , ⋯   , u n } \mathbf{V}=\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} V=span{uk,,un}

min ⁡ { R A ( x ) ∣ x ∈ V } ≥ λ k \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k min{RA(x)xV}λk
于是
max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } ≥ min ⁡ { R A ( x ) ∣ x ∈ V } ≥ λ k \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\ge \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}min{RA(x)xV}λk
所以
λ k = max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

奇异值版

σ k \sigma_k σk A \mathbf{A} A的奇异值

σ k = min ⁡ S : dim ⁡ ( S ) = k max ⁡ x ∈ S , ∥ x ∥ = 1 ∥ A x ∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=k}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=kminxS,x=1maxAx
σ k = min ⁡ S : dim ⁡ ( S ) = n − k + 1 max ⁡ x ∈ S , ∥ x ∥ = 1 ∥ A x ∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=n-k+1}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=nk+1minxS,x=1maxAx

证明:
因为
σ ( A ) = λ ( A H A ) \sigma\left(\mathbf{A}\right)=\sqrt{\lambda\left(\mathbf{A}^H\mathbf{A}\right)} σ(A)=λ(AHA)
并且 A H A \mathbf{A}^H\mathbf{A} AHA是一个厄尔米特矩阵,
然后证明起来就类似了,只不过要开根号

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值