Min-max theorem

瑞利商

A \mathbf{A} A是厄尔米特矩阵 ( A = A H (\mathbf{A}=\mathbf{A}^H (A=AH)
R A ( x ) : C n \ { 0 } → R R_{\mathbf{A}}\left(\mathbf{x}\right):\mathbb{C}^n\backslash\left\{\mathbf{0}\right\}\to\mathbb{R} RA(x):Cn\{0}R定义为
R A = ( A x , x ) ( x , x ) R_{\mathbf{A}}=\frac{\left(\mathbf{Ax},\mathbf{x}\right)}{\left(\mathbf{x},\mathbf{x}\right)} RA=(x,x)(Ax,x)

Min-max theorem

A \mathbf{A} A是厄尔米特矩阵
A \mathbf{A} A的特征值为 λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n \lambda_1\le \lambda_2\le \cdots\le\lambda_n λ1λ2λn

λ k = min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}
λ k = max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

证明:
因为 A \mathbf{A} A是厄尔米特矩阵,所以可以对角化
A \mathbf{A} A两两正交的单位特征向量为 u 1 , ⋯   , u n \mathbf{u}_1,\cdots,\mathbf{u}_n u1,,un
A u i = λ i u i , ( u i , u j ) = 0 , ( u i u i ) = 1 \mathbf{A}\mathbf{u}_i=\lambda_i\mathbf{u}_i,\left(\mathbf{u}_i,\mathbf{u}_j\right)=0,\left(\mathbf{u}_i\mathbf{u}_i\right)=1 Aui=λiui,(ui,uj)=0,(uiui)=1其中 i ≠ j i\neq j i=j

先证明第一个等式
dim ⁡ ( U ) = k \operatorname{dim}\left(\mathbf{U}\right)=k dim(U)=k
dim ⁡ ( U ) + dim ⁡ ( span ⁡ { u k , ⋯   , u n } ) = k + n − k + 1 = n + 1 > n \operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\right)=k+n-k+1=n+1>n dim(U)+dim(span{uk,,un})=k+nk+1=n+1>n
所以
U ∩ span ⁡ { u k , ⋯   , u n } ≠ { 0 } \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\neq\left\{\mathbf{0}\right\} Uspan{uk,,un}={0}
所以存在 v ≠ 0 \mathbf{v}\neq 0 v=0
使得 v ∈ U ∩ span ⁡ { u k , ⋯   , u n } \mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} vUspan{uk,,un}

v = ∑ i = k n α i u i \mathbf{v}=\sum_{i=k}^n \alpha_i\mathbf{u}_i v=i=knαiui

R A ( v ) = ∑ i = k n λ i α i 2 ∑ i = k n α i 2 ≥ λ k R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=k}^n\lambda_i\alpha_i^2}{\sum_{i=k}^n\alpha_i^2}\ge \lambda_k RA(v)=i=knαi2i=knλiαi2λk
所以
max ⁡ { R A ( x ) ∣ x ∈ U } ≥ R A ( v ) ≥ λ k \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\ge R_{\mathbf{A}}\left(\mathbf{v}\right)\ge \lambda_k max{RA(x)xU}RA(v)λk

因为对于任意的 U \mathbf{U} U都是成立的
所以
min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } ≥ λ k \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\ge \lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}λk

接着证明反过来的
V = span ⁡ { u 1 , ⋯   , u k } \mathbf{V}=\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\} V=span{u1,,uk}

max ⁡ { R A ( x ) ∣ x ∈ V } ≤ λ k \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k max{RA(x)xV}λk
于是
min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } ≤ max ⁡ { R A ( x ) ∣ x ∈ V } ≤ λ k \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\le \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}max{RA(x)xV}λk
所以
λ k = min ⁡ U { max ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = k } \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}

接着证明第二个等式
dim ⁡ ( U ) = n − k + 1 \operatorname{dim}\left(\mathbf{U}\right)=n-k+1 dim(U)=nk+1
dim ⁡ ( U ) + dim ⁡ ( span ⁡ { u 1 , ⋯   , u k } ) = n − k + 1 + k = n + 1 > n \operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\right)=n-k+1+k=n+1>n dim(U)+dim(span{u1,,uk})=nk+1+k=n+1>n
所以
U ∩ span ⁡ { u 1 , ⋯   , u k } ≠ { 0 } \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\neq\left\{\mathbf{0}\right\} Uspan{u1,,uk}={0}
所以存在 v ≠ 0 \mathbf{v}\neq 0 v=0
使得 v ∈ U ∩ span ⁡ { u k , ⋯   , u n } \mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} vUspan{uk,,un}
v = ∑ i = 1 k α i u i \mathbf{v}=\sum_{i=1}^k \alpha_i\mathbf{u}_i v=i=1kαiui

R A ( v ) = ∑ i = 1 k λ i α i 2 ∑ i = 1 k α i 2 ≤ λ k R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=1}^k\lambda_i\alpha_i^2}{\sum_{i=1}^k\alpha_i^2}\le \lambda_k RA(v)=i=1kαi2i=1kλiαi2λk
所以
min ⁡ { R A ( x ) ∣ x ∈ U } ≤ R A ( v ) ≤ λ k \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\le R_{\mathbf{A}}\left(\mathbf{v}\right)\le \lambda_k min{RA(x)xU}RA(v)λk
因为对于任意的 U \mathbf{U} U都是成立的
所以
max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } ≤ λ k \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\le \lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}λk

接着证明反过来的
V = span ⁡ { u k , ⋯   , u n } \mathbf{V}=\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\} V=span{uk,,un}

min ⁡ { R A ( x ) ∣ x ∈ V } ≥ λ k \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k min{RA(x)xV}λk
于是
max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } ≥ min ⁡ { R A ( x ) ∣ x ∈ V } ≥ λ k \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\ge \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}min{RA(x)xV}λk
所以
λ k = max ⁡ U { min ⁡ x { R A ( x ) ∣ x ∈ U , x ≠ 0 } ∣ dim ⁡ ( U ) = n − k + 1 } \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

奇异值版

σ k \sigma_k σk A \mathbf{A} A的奇异值

σ k = min ⁡ S : dim ⁡ ( S ) = k max ⁡ x ∈ S , ∥ x ∥ = 1 ∥ A x ∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=k}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=kminxS,x=1maxAx
σ k = min ⁡ S : dim ⁡ ( S ) = n − k + 1 max ⁡ x ∈ S , ∥ x ∥ = 1 ∥ A x ∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=n-k+1}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=nk+1minxS,x=1maxAx

证明:
因为
σ ( A ) = λ ( A H A ) \sigma\left(\mathbf{A}\right)=\sqrt{\lambda\left(\mathbf{A}^H\mathbf{A}\right)} σ(A)=λ(AHA)
并且 A H A \mathbf{A}^H\mathbf{A} AHA是一个厄尔米特矩阵,
然后证明起来就类似了,只不过要开根号

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Make sure that we grade your HW based solely on your R code script. If we don’t see the correct results when we run your code, you will get 0 point for those questions. 1. Create a R function to show the central limit theorem. This function should have the following properties: - In the argument of the function, you have an option to consider poisson, exponential, uniform, normal distributions as the population distribution. - Depending on the choice of the population distribution in part (1), the function will receive extra argument(s) for the parameters of the distribution. For example, if a normal distri- bution is chosen, the mean and SD are needed in the function argument. Note that each distribution has a different parameter setting. - If the distribution is not selected from (“Normal”, “Poisson”, “Uniform”, “Exponential”), the function needs to print the following error message: check the distributional setting: consider ("Normal", "Poisson", "Uniform", "Exponential") and stop. - The function should give the summary statistics (minimum, 1st quartile, median, mean, 3rd quartile, maximum) of 1, 000 sample mean values for given n values (n = 10, 50, 100, 500). - The result should have the following statement at the beginning, for example, if a normal distribution with mean 1 and SD 0.5 was chosen: ‘‘For the Normal distribution, the central limit theorem is tested’’ where the term “Normal” is automatically inserted in the statement based on the argument. And the output should have the following form: For the Normal distribution, the central limit theorem is tested When n=10: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5187 0.8930 1.0016 0.9993 1.1019 1.4532 When n=50: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.7964 0.9508 1.0010 0.9997 1.0493 1.2309 1 When n=100: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8534 0.9679 0.9972 0.9992 1.0325 1.1711 When n=500: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9258 0.9836 1.0006 0.9997 1.0154 1.0678 I Using your own function, test the N(−1,0.52) and the Unif(−3,6) case.
06-05
Sure, I can help you with that! Here's the R code for the function that meets the requirements: ```{r} central_limit_theorem <- function(distribution, ...) { # check if the selected distribution is valid if (!(distribution %in% c("Normal", "Poisson", "Uniform", "Exponential"))) { message("Check the distributional setting: consider ('Normal', 'Poisson', 'Uniform', 'Exponential')") stop() } # create a vector of n values to test n_values <- c(10, 50, 100, 500) # create a data frame to store the summary statistics results <- data.frame(matrix(ncol = length(n_values) + 1, nrow = 6)) # set the column names colnames(results) <- c("Statistic", paste0("n=", n_values)) # set the row names rownames(results) <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.") # generate 1000 sample means for each n value for (i in seq_along(n_values)) { # set the sample size n <- n_values[i] # generate 1000 sample means sample_means <- replicate(1000, mean(rdist(distribution, n = n, ...))) # calculate the summary statistics and store them in the results data frame results[, i + 1] <- round(summary(sample_means), 4) } # create the output statement output_statement <- paste0("For the ", distribution, " distribution, the central limit theorem is tested") # print the output statement and the summary statistics cat(output_statement, "\n") print(results) } # create a helper function to generate random numbers from different distributions rdist <- function(distribution, n, ...) { switch(distribution, "Normal" = rnorm(n, ...), "Poisson" = rpois(n, ...), "Uniform" = runif(n, ...), "Exponential" = rexp(n, ...)) } # test the function with Normal distribution with mean -1 and SD 0.5 central_limit_theorem("Normal", mean = -1, sd = 0.5) # test the function with Uniform distribution with minimum -3 and maximum 6 central_limit_theorem("Uniform", min = -3, max = 6) ``` Hope this helps! Let me know if you have any questions.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值