Givens旋转变换

( C S − S C ) ( a b ) = ( a 2 + b 2 0 ) \begin{pmatrix} C&S\\ -S&C\\ \end{pmatrix}\begin{pmatrix} a\\ b\\ \end{pmatrix}=\begin{pmatrix} \sqrt{a^2+b^2}\\ 0\\ \end{pmatrix} (CSSC)(ab)=(a2+b2 0)
G = ( C S − S C ) 为正交矩阵 \mathbf{G}=\begin{pmatrix} C&S\\ -S&C\\ \end{pmatrix}\text{为正交矩阵} G=(CSSC)为正交矩阵
{ C a + S b = a 2 + b 2 − S a + C b = 0 C 2 + S 2 = 1 ⇒ { C = a a 2 + b 2 = cos ⁡ θ S = b a 2 + b 2 = sin ⁡ θ \begin{cases} Ca+Sb=\sqrt{a^2+b^2}\\ -Sa+Cb=0\\ C^2+S^2=1 \end{cases}\Rightarrow \begin{cases} C=\frac{a}{\sqrt{a^2+b^2}}=\cos \theta\\ S=\frac{b}{\sqrt{a^2+b^2}}=\sin \theta \end{cases} Ca+Sb=a2+b2 Sa+Cb=0C2+S2=1{C=a2+b2 a=cosθS=a2+b2 b=sinθ
这个 G \mathbf{G} G就是旋转矩阵了
两个向量模长相等

类似地
G ( i , j , θ ) = ( 1 ⋯ 0 ⋯ 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋯ C ⋯ S ⋯ 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 ⋯ − S ⋯ C ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 ⋯ 0 ⋯ 0 ⋯ 1 ) \mathbf{G}\left(i,j,\theta\right)=\begin{pmatrix} 1&\cdots&0&\cdots&0&\cdots&0\\ \vdots&\ddots&\vdots&&\vdots&&\vdots\\ 0&\cdots&C&\cdots&S&\cdots&0\\ \vdots&&\vdots&\ddots&\vdots&&\vdots\\ 0&\cdots&-S&\cdots&C&\cdots&0\\ \vdots&&\vdots&&\vdots&\ddots&\vdots\\ 0&\cdots&0&\cdots&0&\cdots&1\\ \end{pmatrix} G(i,j,θ)=10000CS00SC00001
其中 g k k = 1 , k ≠ i , j g_{kk}=1,k\neq i,j gkk=1,k=i,j
g i , i = g j , j = C g_{i,i}=g_{j,j}=C gi,i=gj,j=C
g i , j = S g_{i,j}=S gi,j=S
g j , i = − S g_{j,i}=-S gj,i=S
其余元素为0

G x = y \mathbf{Gx}=\mathbf{y} Gx=y,将 x \mathbf{x} x i , j i,j i,j平面,顺时针旋转 θ \theta θ,得到 y \mathbf{y} y

应用1

x \mathbf{x} x通过Givens旋转变换,得到 z \mathbf{z} z,使得 z ∈ span ⁡ { y } \mathbf{z}\in\operatorname{span}\left\{\mathbf{y}\right\} zspan{y}

解:
z = ∥ x ∥ ∥ y ∥ y \mathbf{z}=\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|}\mathbf{y} z=yxy
依次把 x \mathbf{x} x 2 , 3 , ⋯   , n 2,3,\cdots,n 2,3,,n个元素变成0
G 1 , n − 1 G 1 , n − 2 ⋯ G 1 , 2 x = ∥ x ∥ e 1 \mathbf{G}_{1,n-1}\mathbf{G}_{1,n-2}\cdots \mathbf{G}_{1,2}\mathbf{x}=\|\mathbf{x}\|\mathbf{e}_1 G1,n1G1,n2G1,2x=xe1
依次把 z \mathbf{z} z 2 , 3 , ⋯   , n 2,3,\cdots,n 2,3,,n个元素变成0
G 2 , n − 1 G 2 , n − 2 ⋯ G 2 , 2 z = ∥ x ∥ e 1 \mathbf{G}_{2,n-1}\mathbf{G}_{2,n-2}\cdots \mathbf{G}_{2,2}\mathbf{z}=\|\mathbf{x}\|\mathbf{e}_1 G2,n1G2,n2G2,2z=xe1
⇒ z = ( G 2 , n − 1 G 2 , n − 2 ⋯ G 2 , 2 ) T ( G 1 , n − 1 G 1 , n − 2 ⋯ G 1 , 2 ) x \Rightarrow \mathbf{z}=\left(\mathbf{G}_{2,n-1}\mathbf{G}_{2,n-2}\cdots \mathbf{G}_{2,2}\right)^T \left(\mathbf{G}_{1,n-1}\mathbf{G}_{1,n-2}\cdots \mathbf{G}_{1,2}\right) \mathbf{x} z=(G2,n1G2,n2G2,2)T(G1,n1G1,n2G1,2)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值