谱半径学习

谱半径

λ 1 , ⋯   , λ n \lambda_1,\cdots, \lambda_n λ1,,λn A ∈ C n × n \mathbf{A}\in\mathbb{C}^{n\times n} ACn×n的特征值,则谱半径定义为
ρ ( A ) = max ⁡ { ∣ λ 1 ∣ , ⋯   , ∣ λ n ∣ } \rho\left(\mathbf{A}\right)=\max\left\{\left|\lambda_1\right|,\cdots, \left|\lambda_n\right|\right\} ρ(A)=max{λ1,,λn}

注意 ∥ A v ∥ ≤ ρ ( A ) ∥ v ∥ \|\mathbf{A}\mathbf{v}\|\le\rho\left(\mathbf{A}\right)\|\mathbf{v}\| Avρ(A)v不一定成立
C r = ( 0 1 r r 0 ) \mathbf{C}_r=\begin{pmatrix} 0&\frac{1}{r}\\ r&0\\ \end{pmatrix} Cr=(0rr10)
其中 r > 1 r>1 r>1
C r \mathbf{C}_r Cr的特征值为 ± 1 \pm 1 ±1
C r e 1 = r e 2 \mathbf{C}_r\mathbf{e}_1=r\mathbf{e}_2 Cre1=re2
∥ C r e 1 ∥ = r > 1 = ρ ( C r ) ∥ e 1 ∥ \|\mathbf{C}_r\mathbf{e}_1\|=r>1=\rho\left(\mathbf{C}_r\right)\|\mathbf{e}_1\| Cre1=r>1=ρ(Cr)e1
如果 A \mathbf{A} A是Hermitian矩阵的话则 ∥ A v ∥ ≤ ρ ( A ) ∥ v ∥ \|\mathbf{A}\mathbf{v}\|\le\rho\left(\mathbf{A}\right)\|\mathbf{v}\| Avρ(A)v

性质

性质1

ρ ( A ) ≤ ∥ A ∥ \rho\left(\mathbf{A}\right)\le \|\mathbf{A}\| ρ(A)A
其中 ∥ ⋅ ∥ \|\cdot\| 是任意算子范数

证明:
λ \lambda λ A \mathbf{A} A的特征值, x \mathbf{x} x是对应的特征向量
∣ λ ∣ ∥ x ∥ = ∥ λ x ∥ = ∥ A x ∥ ≤ ∥ A ∥   ∥ x ∥ ⇒ ρ ( A ) ≤ ∥ A ∥ \left|\lambda\right|\|\mathbf{x}\|=\|\lambda\mathbf{x}\|=\|\mathbf{Ax}\|\le\|\mathbf{A}\|\ \|\mathbf{x}\|\Rightarrow \rho\left(\mathbf{A}\right)\le \|\mathbf{A}\| λx=λx=AxA xρ(A)A

性质2

对于 ϵ > 0 \epsilon>0 ϵ>0,存在某种矩阵范数 ∥ ⋅ ∥ \|\cdot\| ,使得
∥ A ∥ ≤ ρ ( A ) + ϵ \|\mathbf{A}\|\le\rho\left(\mathbf{A}\right)+\epsilon Aρ(A)+ϵ

证明:
由若尔当分解定理
A = S ( J n 1 ( λ 1 ) 0 ⋯ 0 0 J n 2 ( λ 2 ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 J n k ( λ k ) ) S − 1 \mathbf{A}=\mathbf{S}\begin{pmatrix} \mathbf{J}_{n_1}\left(\lambda_1\right)&0&\cdots&0\\ 0&\mathbf{J}_{n_2}\left(\lambda_2\right)&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\mathbf{J}_{n_k}\left(\lambda_k\right)\\ \end{pmatrix}\mathbf{S}^{-1} A=S Jn1(λ1)000Jn2(λ2)000Jnk(λk) S1
其中 S \mathbf{S} S是可逆矩阵, λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A \mathbf{A} A的特征值, n 1 + ⋯ + n k = n n_1+\cdots+n_k=n n1++nk=n


D ( η ) = ( D n 1 ( η ) 0 ⋯ 0 0 D n 2 ( η ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 D n k ( η ) ) \mathbf{D}\left(\eta\right)=\begin{pmatrix} \mathbf{D}_{n_1}\left(\eta\right)&0&\cdots&0\\ 0&\mathbf{D}_{n_2}\left(\eta\right)&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\mathbf{D}_{n_k}\left(\eta\right)\\ \end{pmatrix} D(η)= Dn1(η)000Dn2(η)000Dnk(η)
其中
D m ( η ) = ( η 0 ⋯ 0 0 η 2 ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 η m ) \mathbf{D}_m\left(\eta\right)=\begin{pmatrix} \eta &0&\cdots&0\\ 0&\eta^2&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\eta^m\\ \end{pmatrix} Dm(η)= η000η2000ηm

D ( 1 ϵ ) S − 1 A S D ( ϵ ) = ( B n 1 ( λ 1 , ϵ ) 0 ⋯ 0 0 B n 2 ( λ 2 , ϵ ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 B n k ( λ k , ϵ ) ) \mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)= \begin{pmatrix} \mathbf{B}_{n_1}\left(\lambda_1,\epsilon\right)&0&\cdots&0\\ 0&\mathbf{B}_{n_2}\left(\lambda_2,\epsilon\right)&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\mathbf{B}_{n_k}\left(\lambda_k,\epsilon\right)\\ \end{pmatrix} D(ϵ1)S1ASD(ϵ)= Bn1(λ1,ϵ)000Bn2(λ2,ϵ)000Bnk(λk,ϵ)
其中
B m ( λ , ϵ ) = D m ( 1 ϵ ) J m ( λ ) D m ( ϵ ) = ( λ ϵ 0 ⋯ 0 0 λ ϵ 0 ⋮ 0 ⋱ ⋱ ⋱ 0 ⋮ ⋱ ⋱ λ ϵ 0 ⋯ 0 0 λ ) \mathbf{B}_{m}\left(\lambda,\epsilon\right)=\mathbf{D}_m\left(\frac{1}{\epsilon}\right)\mathbf{J}_m\left(\lambda\right)\mathbf{D}_m\left(\epsilon\right)=\begin{pmatrix} \lambda&\epsilon&0&\cdots&0\\ 0&\lambda&\epsilon&0&\vdots\\ 0&\ddots&\ddots&\ddots&0\\ \vdots&\ddots&\ddots&\lambda&\epsilon\\ 0&\cdots&0&0&\lambda\\ \end{pmatrix} Bm(λ,ϵ)=Dm(ϵ1)Jm(λ)Dm(ϵ)= λ000ϵλ0ϵ00λ000ϵλ

定义矩阵范数
∥ A ∥ = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 \|\mathbf{A}\|=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1 A=D(ϵ1)S1ASD(ϵ)1
接下来验证 ∥ ⋅ ∥ \|\cdot\| 是矩阵范数

容易验证非负性和正齐次性

三角不等式:
∥ A + B ∥ = ∥ D ( 1 ϵ ) S − 1 ( A + B ) S D ( ϵ ) ∥ 1 = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) + D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 ≤ ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 + ∥ D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 = ∥ A ∥ + ∥ B ∥ \begin{aligned} \|\mathbf{A}+\mathbf{B}\|&=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\left(\mathbf{A}+\mathbf{B}\right)\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)+\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &\le \|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1+\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &=\|\mathbf{A}\|+\|\mathbf{B}\| \end{aligned} A+B=D(ϵ1)S1(A+B)SD(ϵ)1=D(ϵ1)S1ASD(ϵ)+D(ϵ1)S1BSD(ϵ)1D(ϵ1)S1ASD(ϵ)1+D(ϵ1)S1BSD(ϵ)1=A+B

次乘性:

因为 D ( 1 ϵ ) D ( ϵ ) = I \mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{D}\left(\epsilon\right)=\mathbf{I} D(ϵ1)D(ϵ)=I
∥ A B ∥ = ∥ D ( 1 ϵ ) S − 1 A B S D ( ϵ ) ∥ 1 = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 ≤ ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 ∥ D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 = ∥ A ∥ ∥ B ∥ \begin{aligned} \|\mathbf{AB}\|&=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{AB}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &\le \|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1 \|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1\\ &=\|\mathbf{A}\|\|\mathbf{B}\| \end{aligned} AB=D(ϵ1)S1ABSD(ϵ)1=D(ϵ1)S1ASD(ϵ)D(ϵ1)S1BSD(ϵ)1D(ϵ1)S1ASD(ϵ)1D(ϵ1)S1BSD(ϵ)1=A∥∥B
所以 ∥ ⋅ ∥ \|\cdot\| 是矩阵范数

于是
∥ A ∥ = max ⁡ i ∈ { 1 , 2 , ⋯   , n } ( ∣ λ i ∣ + ϵ ) = ρ ( A ) + ϵ \|\mathbf{A}\|=\max_{i\in\left\{1,2,\cdots,n\right\}}\left(\left|\lambda_i\right|+\epsilon\right)=\rho\left(\mathbf{A}\right)+\epsilon A=i{1,2,,n}max(λi+ϵ)=ρ(A)+ϵ

性质3

ρ ( A ) < 1 ⇔ lim ⁡ k → ∞ A k = 0 \rho\left(\mathbf{A}\right)<1 \Leftrightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=0 ρ(A)<1klimAk=0

证明:
A \mathbf{A} A的特征值为 λ \lambda λ,对应的特征向量为 v \mathbf{v} v
假设 lim ⁡ k → ∞ A k = 0 \lim\limits_{k\to\infty}\mathbf{A}^k=0 klimAk=0
0 = ( lim ⁡ k → ∞ A k ) v = lim ⁡ k → ∞ ( A k v ) = lim ⁡ k → ∞ ( λ k v ) = v lim ⁡ k → ∞ λ k \begin{aligned} 0&=\left(\lim\limits_{k\to\infty}\mathbf{A}^k\right)\mathbf{v}\\ &=\lim\limits_{k\to\infty}\left(\mathbf{A}^k\mathbf{v}\right)\\ &=\lim\limits_{k\to\infty}\left(\lambda^k\mathbf{v}\right)\\ &=\mathbf{v}\lim\limits_{k\to\infty}\lambda^k\\ \end{aligned} 0=(klimAk)v=klim(Akv)=klim(λkv)=vklimλk
因为 v ≠ 0 \mathbf{v}\neq 0 v=0,
lim ⁡ k → ∞ λ k = 0 ⇒ ∣ λ ∣ < 1 ⇒ ρ ( A ) < 1 \lim\limits_{k\to\infty}\lambda^k=0\Rightarrow \left|\lambda\right|<1 \Rightarrow \rho\left(\mathbf{A}\right)<1 klimλk=0λ<1ρ(A)<1

假设 ρ ( A ) < 1 \rho\left(\mathbf{A}\right)<1 ρ(A)<1
由若尔当分解定理
A = S ( J n 1 ( λ 1 ) 0 ⋯ 0 0 J n 2 ( λ 2 ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 J n k ( λ k ) ) S − 1 \mathbf{A}=\mathbf{S}\begin{pmatrix} \mathbf{J}_{n_1}\left(\lambda_1\right)&0&\cdots&0\\ 0&\mathbf{J}_{n_2}\left(\lambda_2\right)&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\mathbf{J}_{n_k}\left(\lambda_k\right)\\ \end{pmatrix}\mathbf{S}^{-1} A=S Jn1(λ1)000Jn2(λ2)000Jnk(λk) S1
其中 S \mathbf{S} S是可逆矩阵, λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A \mathbf{A} A的特征值, n 1 + ⋯ + n k = n n_1+\cdots+n_k=n n1++nk=n
由若尔当块的性质,对于充分大的 k k k,有
J n i k ( λ i ) = [ λ i k ( k 1 ) λ i k − 1 ( k 2 ) λ i k − 2 ⋯ ( k n i − 1 ) λ i k − n i + 1 0 λ i k ( k 1 ) λ i k − 1 ⋯ ( k n i − 2 ) λ i k − n i + 2 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 … λ i k ( k 1 ) λ i k − 1 0 0 ⋯ 0 λ i k ] \mathbf{J}_{n_{i}}^{k}\left(\lambda_{i}\right)=\left[\begin{array}{ccccc} \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} & \left(\begin{array}{c} k \\ 2 \end{array}\right) \lambda_{i}^{k-2} & \cdots & \left(\begin{array}{c} k \\ n_{i}-1 \end{array}\right) \lambda_{i}^{k-n_{i}+1} \\ 0 & \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} & \cdots & \left(\begin{array}{c} k \\ n_{i}-2 \end{array}\right) \lambda_{i}^{k-n_{i}+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} \\ 0 & 0 & \cdots & 0 & \lambda_{i}^{k} \end{array}\right] Jnik(λi)= λik000(k1)λik1λik00(k2)λik2(k1)λik1λik0(kni1)λikni+1(kni2)λikni+2(k1)λik1λik
所以
lim ⁡ k → ∞ J n i k = 0 ⇒ lim ⁡ k → ∞ J k = 0 ⇒ lim ⁡ k → ∞ A k = lim ⁡ k → ∞ S J k S − 1 = S ( lim ⁡ k → ∞ J k ) S − 1 = 0 \lim\limits_{k\to\infty}\mathbf{J}_{n_i}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{J}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=\lim\limits_{k\to\infty}\mathbf{S}\mathbf{J}^k\mathbf{S}^{-1}=\mathbf{S}\left(\lim\limits_{k\to\infty}\mathbf{J}^k\right)\mathbf{S}^{-1}=0 klimJnik=0klimJk=0klimAk=klimSJkS1=S(klimJk)S1=0

Gelfand定理

ρ ( A ) = lim ⁡ k → ∞ ∥ A k ∥ 1 k \rho\left(\mathbf{A}\right)=\lim\limits_{k\to\infty}\|\mathbf{A}^{k}\|^{\frac{1}{k}} ρ(A)=klimAkk1

证明: k ≥ 0 k\ge 0 k0
ρ ( A ) k = ρ ( A k ) = ∥ A k ∥ ⇒ ρ ( A ) ≤ ∥ A k ∥ 1 k ⇒ ρ ( A ) ≤ lim ⁡ k → ∞ ∥ A k ∥ 1 k \rho\left(\mathbf{A}\right)^k=\rho\left(\mathbf{A}^k\right)=\|\mathbf{A}^k\|\Rightarrow\rho\left(\mathbf{A}\right)\le\|\mathbf{A}^k\|^{\frac{1}{k}}\Rightarrow \rho\left(\mathbf{A}\right)\le\lim\limits_{k\to\infty}\|\mathbf{A}^k\|^{\frac{1}{k}} ρ(A)k=ρ(Ak)=Akρ(A)Akk1ρ(A)klimAkk1

存在范数 ∥ ⋅ ∥ M \|\cdot\|_M M,使得 ∥ A ∥ M ≤ ρ ( A ) + ϵ \|\mathbf{A}\|_M\le \rho\left(\mathbf{A}\right)+\epsilon AMρ(A)+ϵ
( ∥ ⋅ ∥ M \|\cdot\|_M M M M M主要是为了和上面的范数区分)
由范数的等价性
∃ C > 0 , s . t .   ∥ ⋅ ∥ ≤ C ∥ ⋅ ∥ M \exists C>0,s.t.\ \|\cdot\|\le C\|\cdot\|_M C>0,s.t. CM
所以
∥ A k ∥ ≤ C ∥ A k ∥ M ≤ C ∥ A ∥ M k ≤ C ( ρ ( A ) + ϵ ) k ∥ A k ∥ 1 k ≤ C 1 k ( ρ ( A ) + ϵ ) lim ⁡ k → ∞ ∥ A k ∥ 1 k ≤ ρ ( A ) + ϵ \|\mathbf{A}^k\|\le C\|\mathbf{A}^k\|_M\le C\|\mathbf{A}\|_M^k\le C\left(\rho\left(\mathbf{A}\right)+\epsilon\right)^k\\ \|\mathbf{A}^k\|^{\frac{1}{k}} \le C^{\frac{1}{k}}\left(\rho\left(\mathbf{A}\right)+\epsilon\right)\\ \lim\limits_{k\to\infty} \|\mathbf{A}^k\|^{\frac{1}{k}}\le \rho\left(\mathbf{A}\right)+\epsilon AkCAkMCAMkC(ρ(A)+ϵ)kAkk1Ck1(ρ(A)+ϵ)klimAkk1ρ(A)+ϵ

参考:
https://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
https://en.wikipedia.org/wiki/Spectral_radius

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值