fenchel-rockafellar duality

文章介绍了Legendre变换在单变量和多变量凸函数中的定义,以及Fenchels对偶定理如何表述凸函数和凹函数之间的关系。通过对偶性,原优化问题和对偶问题之间的等价性得以揭示,这在解决实际优化问题时具有重要价值。
摘要由CSDN通过智能技术生成

Legendre transform

设区 I ⊂ R I \subset \mathbb{R} IR, f : I → R ‾ f:I\to \overline{\mathbb{R}} f:IR是一个凸函数,则 f f f的Legendre transform为 f ∗ : I ∗ → R f^*:I^*\to \mathbb{R} f:IR
f ∗ ( x ∗ ) = sup ⁡ x ∈ I ( x ∗ x − f ( x ) ) , x ∗ ∈ I ∗ f^*\left(x^*\right)=\sup_{x\in I}\left(x^*x-f\left(x\right)\right),\quad x^*\in I^* f(x)=xIsup(xxf(x)),xI
其中 I ∗ = { x ∗ ∈ R : f ∗ ( x ∗ ) < ∞ } I^* = \left\{x^*\in \mathbb{R}:f^*\left(x^*\right)<\infty\right\} I={xR:f(x)<}

类似地

定义在凸集 x ⊂ R n \mathbf{x}\subset \mathbb{R}^n xRn的凸函数 f : X → R f:X\to \mathbb{R} f:XR,则 f ∗ : X ∗ → R f^*:X^*\to \mathbb{R} f:XR
f ∗ ( x ∗ ) = sup ⁡ x ∈ X ( ⟨ x ∗ , x ⟩ − f ( x ) ) , x ∗ ∈ X ∗ f^*\left(\mathbf{x}^*\right)=\sup_{\mathbf{x}\in X}\left(\langle \mathbf{x}^*,\mathbf{x}\rangle - f\left(x\right)\right), \mathbf{x}^*\in X^* f(x)=xXsup(x,xf(x)),xX
其中 X ∗ = { x ∗ ∈ R n : sup ⁡ x ∈ X ( ⟨ x ∗ , x ⟩ − f ( x ) ) < ∞ } X^*=\left\{\mathbf{x}^* \in \mathbb{R}^n: \sup_{\mathbf{x} \in X}\left(\left\langle \mathbf{x}^*, \mathbf{x}\right\rangle-f(\mathbf{x})\right)<\infty\right\} X={xRn:supxX(x,xf(x))<}

Fenchel’s duality theorem

f f f是定义在 R n \mathbb{R}^n Rn上的适当凸函数, g g g是定义在 R n \mathbb{R}^n Rn上的 适当凹函数,则
inf ⁡ x ( f ( x ) − g ( x ) ) = sup ⁡ p ( g ∗ ( p ) − f ∗ ( p ) ) \inf_{\mathbf{x}}\left(f\left(\mathbf{x}\right) - g\left(\mathbf{x}\right)\right) = \sup_{\mathbf{p}}\left(g^{*}\left(\mathbf{p}\right) - f^*\left(\mathbf{p}\right)\right) xinf(f(x)g(x))=psup(g(p)f(p))
其中
f ∗ ( x ∗ ) : = sup ⁡ { ⟨ x ∗ , x ⟩ − f ( x ) ∣ x ∈ R n } g ∗ ( x ∗ ) : = inf ⁡ { ⟨ x ∗ , x ⟩ − g ( x ) ∣ x ∈ R n } f^*\left(\mathbf{x}^*\right) :=\sup\left\{\left\langle \mathbf{x}^*,\mathbf{x}\right\rangle - f\left(\mathbf{x}\right)|\mathbf{x}\in\mathbb{R}^n\right\}\\ g^*\left(\mathbf{x}^*\right) :=\inf\left\{\left\langle \mathbf{x}^*,\mathbf{x}\right\rangle - g\left(\mathbf{x}\right)|\mathbf{x}\in\mathbb{R}^n\right\}\\ f(x):=sup{x,xf(x)xRn}g(x):=inf{x,xg(x)xRn}

证明:
原问题可以写为
inf ⁡ x , y ( f ( x ) − g ( y ) ) s.t. y = x \begin{aligned} \inf_{\mathbf{x},\mathbf{y}}&\left(f\left(\mathbf{x}\right) - g\left(\mathbf{y}\right)\right)\\ \text{s.t.}& \mathbf{y}=\mathbf{x} \end{aligned} x,yinfs.t.(f(x)g(y))y=x
于是
L ( x , y , λ ) = f ( x ) − g ( y ) + λ T ( y − x ) L\left(\mathbf{x},\mathbf{y},\mathbf{\lambda}\right) = f\left(\mathbf{x}\right) - g\left(\mathbf{y}\right) + \mathbf{\lambda}^T\left(\mathbf{y}-\mathbf{x}\right) L(x,y,λ)=f(x)g(y)+λT(yx)
对偶
inf ⁡ x , y L = − sup ⁡ x ( λ T x − f ( x ) ) + inf ⁡ y ( λ T y − g ( y ) ) = g ∗ ( λ ) − f ∗ ( λ ) \begin{aligned} \inf_{\mathbf{x},\mathbf{y}}L &= -\sup_{\mathbf{x}} \left(\mathbf{\lambda}^T\mathbf{x}-f\left(\mathbf{x}\right)\right) + \inf_{\mathbf{y}}\left(\mathbf{\lambda}^T\mathbf{y}-g\left(\mathbf{y}\right)\right)\\ &=g^*\left(\mathbf{\lambda}\right)-f^*\left(\mathbf{\lambda}\right) \end{aligned} x,yinfL=xsup(λTxf(x))+yinf(λTyg(y))=g(λ)f(λ)
因此对偶问题就是
sup ⁡ p ( g ∗ ( p ) − f ∗ ( p ) ) \sup_{\mathbf{p}}\left(g^{*}\left(\mathbf{p}\right) - f^*\left(\mathbf{p}\right)\right) psup(g(p)f(p))

参考
https://en.wikipedia.org/wiki/Fenchel%27s_duality_theorem

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值