基础拓扑-习题(上)

1.证明空集是任何集合的子集
证明:
假设 ∅ ⊄ A \emptyset \not\subset A A,存在 x ∈ ∅ , x ∉ A x \in \emptyset,x \not\in A x,xA,矛盾

2.如果存在不全为零的整数 a 0 , a 1 , ⋯   , a n a_{0}, a_{1}, \cdots, a_{n} a0,a1,,an,而复数 z z z满足
a 0 z n + a 1 z n − 1 + ⋯ + a n − 1 z + a n = 0 a_{0}z^n + a_{1}z^{n-1}+ \cdots + a_{n-1}z + a_{n} = 0 a0zn+a1zn1++an1z+an=0
就说 z z z是一个代数数(algebraic)。证明,所有代数数构成可数集
‌‌‌‌  提示:对于每个正整数 N N N,满足条件
n + ∣ a 0 ∣ + ∣ a 1 ∣ + ⋯ + ∣ a n ∣ = N n+\left| a_{0} \right| + \left| a_{1} \right| +\cdots + \left| a_{n} \right| = N n+a0+a1++an=N
的方程,只有有限个
证明:
n n n次方程有 n n n个复数解

A N = { z ∈ C : n + ∣ a 0 ∣ + ∣ a 1 ∣ + ⋯ + ∣ a n ∣ = N , a 0 z n + a 1 z n − 1 + ⋯ + a n − 1 z + a n = 0 } A_{N}=\left\{ z \in \mathbb{C}: n+\left| a_{0} \right| + \left| a_{1} \right| +\cdots + \left| a_{n} \right| = N,a_{0}z^n + a_{1}z^{n-1}+ \cdots + a_{n-1}z + a_{n} = 0\right\} AN={zC:n+a0+a1++an=N,a0zn+a1zn1++an1z+an=0}
显然 A N A_{N} AN只有有限个元素
因此 ⋃ N = 1 ∞ A N \bigcup_{N=1}^{\infty}A_{N} N=1AN可数

3.存在不是代数数的实数
证明:
如果全体实数都是代数数,因为 R \mathbb{R} R不可数,代数数构成的集合不可数,矛盾

4.问:所有无理实数组成的集是否可数?
证明:
令无理实数集为 A A A
R = A ∪ Q \mathbb{R}=A\cup \mathbb{Q} R=AQ
假设 A A A可数,因为 Q \mathbb{Q} Q可数,因此 Q \mathbb{Q} Q可数,矛盾

5.作一个实数的有界集,使它有三个极限点
解:
A = { 1 n : n ∈ N + } ∪ { 1 + 1 n : n ∈ N + } ∪ { 2 + 1 n : n ∈ N + } A = \left\{ \frac{1}{n}:n\in \mathbb{N}_{+} \right\} \cup \left\{ 1 + \frac{1}{n}:n\in \mathbb{N}_{+} \right\} \cup \left\{ 2 + \frac{1}{n}:n\in \mathbb{N}_{+} \right\} A={n1:nN+}{1+n1:nN+}{2+n1:nN+}
∀ x ∈ A , ∣ x ∣ ≤ 3 \forall x \in A, \left| x \right| \le 3 xA,x3
极限点 0 , 1 , 2 0,1,2 0,1,2

6.证明: E ′ E^{\prime} E是闭集。
证明: E E E E ˉ \bar{E} Eˉ有相同的极限点。
E E E E ′ E^{\prime} E是否总有相同的极限点呢?

证明:
‌‌‌‌  先证明 ( E ˉ ) ′ ⊂ E ′ \left( \bar{E} \right)^{\prime} \subset E^{\prime} (Eˉ)E
‌‌‌‌  设 x ∈ ( E ˉ ) ′ x \in \left( \bar{E} \right)^{\prime} x(Eˉ),则 ∀ r > 0 , ∃ y ∈ E ˉ , 0 < d ( x , y ) < r \forall r > 0, \exists y \in \bar{E}, 0 < d\left( x, y \right) < r r>0,yEˉ,0<d(x,y)<r
‌‌‌‌  如果 y ∈ E y \in E yE,则 x ∈ E ′ x \in E^{\prime} xE
‌‌‌‌  如果 y ∉ E y \not\in E yE,则 y ∈ E ′ y \in E^{\prime} yE, 因此 ∀ s > 0 , ∃ z ∈ E , 0 < d ( y , z ) < s \forall s > 0, \exists z \in E, 0 < d \left( y, z \right) < s s>0,zE,0<d(y,z)<s
‌‌‌‌  令 s = min ⁡ ( d ( x , y ) , r − d ( x , y ) ) s = \min \left( d \left( x,y \right), r - d\left( x,y \right) \right) s=min(d(x,y),rd(x,y))
‌‌‌‌  那么 x ≠ z x \neq z x=z(否则 0 < d ( y , x ) < d ( x , y ) 0 < d \left( y,x \right) < d \left( x,y \right) 0<d(y,x)<d(x,y),矛盾)
0 < d ( x , z ) ≤ d ( x , y ) + d ( y , z ) < r 0 < d \left( x,z \right) \le d \left( x,y \right) + d\left( y, z \right) <r 0<d(x,z)d(x,y)+d(y,z)<r
‌‌‌‌  综上所述 x ∈ E ′ x \in E^{\prime} xE,进而 ( E ′ ) ′ ⊂ ( E ˉ ) ′ ⊂ E ′ \left( E^{\prime}\right)^{\prime} \subset \left( \bar{E} \right)^{\prime} \subset E^{\prime} (E)(Eˉ)E,因此 E ′ E^{\prime} E是闭集

‌‌‌‌  上面证明了 ( E ˉ ) ′ ⊂ E ′ \left( \bar{E} \right)^{\prime} \subset E^{\prime} (Eˉ)E,只要证明 E ′ ⊂ ( E ˉ ) ′ E^{\prime} \subset \left( \bar{E} \right)^{\prime} E(Eˉ),因为 E ⊂ E ˉ E \subset \bar{E} EEˉ,所以显然成立

‌‌‌‌   E = { 1 n : n ∈ N + } E=\left\{ \frac{1}{n}:n \in \mathbb{N}_{+} \right\} E={n1:nN+},极限点0,而 { 0 } \left\{ 0 \right\} {0}没有极限点

7.令 A 1 , A 2 , ⋯ A_{1}, A_{2}, \cdots A1,A2,是某度量空间的子集
(a)如果 B n = ⋃ i = 1 n A i B_{n}=\bigcup_{i=1}^{n}A_{i} Bn=i=1nAi,证明 B ˉ n = ⋃ i = 1 n A ˉ n , n = 1 , 2 , ⋯ \bar{B}_{n}=\bigcup_{i=1}^{n}\bar{A}_{n}, n=1,2,\cdots Bˉn=i=1nAˉn,n=1,2,
(b)如果 B = ⋃ i = 1 ∞ A i B = \bigcup_{i=1}^{\infty}A_{i} B=i=1Ai,证明 B ˉ ⊃ ⋃ i = 1 ∞ A ˉ i \bar{B}\supset \bigcup_{i=1}^{\infty}\bar{A}_{i} Bˉi=1Aˉi,并证明可以取到真子集

证明:
‌‌‌‌  先证明 E ′ ∪ F ′ = ( E ∪ F ) ′ E^{\prime} \cup F^{\prime} = \left( E \cup F \right)^{\prime} EF=(EF),进而 E ˉ ∪ F ˉ = E ∪ F ‾ \bar{E}\cup \bar{F}=\overline{E \cup F} EˉFˉ=EF
‌‌‌‌  若 x ∈ E ′ x \in E^{\prime} xE,则 x ∈ ( E ∪ F ) ′ x \in \left( E \cup F\right)^{\prime} x(EF)
‌‌‌‌  若 y ∈ F ′ y \in F^{\prime} yF,则 x ∈ ( E ∪ F ) ′ x \in \left( E \cup F \right)^{\prime} x(EF)
‌‌‌‌  因此 E ′ ∪ F ′ ⊂ ( E ∪ F ) ′ E^{\prime}\cup F^{\prime} \subset \left( E \cup F \right)^{\prime} EF(EF)

‌‌‌‌  若 x ∈ ( E ∪ F ) ′ x \in \left( E \cup F \right)^{\prime} x(EF),假设 x ∉ E ′ ∪ F ′ x \not\in E^{\prime}\cup F^{\prime} xEF
‌‌‌‌   x ∉ E ′ x \not\in E^{\prime} xE,则 ∃ r > 0 , N r ( x ) ∩ ( E \ { x } ) = ∅ \exists r >0, N_{r}\left( x \right) \cap \left( E \backslash \left\{ x \right\} \right)= \emptyset r>0,Nr(x)(E\{x})=
‌‌‌‌   x ∉ F ′ x \not\in F^{\prime} xF,则 ∃ s > 0 , N s ( x ) ∩ ( F \ { x } ) = ∅ \exists s > 0, N_{s}\left( x \right) \cap \left( F \backslash \left\{ x \right\} \right)=\emptyset s>0,Ns(x)(F\{x})=
‌‌‌‌  令 t = min ⁡ ( r , s ) , N t ( x ) ∩ ( E ∪ F \ { x } ) = ∅ t=\min\left( r,s \right),N_{t}\left( x \right)\cap \left( E \cup F \backslash \left\{ x \right\} \right)=\emptyset t=min(r,s),Nt(x)(EF\{x})=,矛盾

(a)显然
(b) A i ⊂ B A_{i} \subset B AiB,进而 A ˉ i ⊂ B \bar{A}_{i} \subset B AˉiB,因此成立
A i = { r i } , r i ∈ Q A_{i} = \left\{ r_{i} \right\},r_{i} \in \mathbb{Q} Ai={ri},riQ
⋃ i = 1 ∞ A i ‾ = Q \overline{\bigcup_{i=1}^{\infty}A_{i}}=\mathbb{Q} i=1Ai=Q,而 B ˉ = R 1 \bar{B}= \mathbb{R}^{1} Bˉ=R1
或者 A i = ( 1 n , 2 ] , A ˉ i = [ 1 n , 2 ] , ⋃ i = 1 ∞ A i ‾ = ( 0 , 2 ] , B ˉ = [ 0 , 2 ] A_{i}=\left( \frac{1}{n},2 \right],\bar{A}_{i}=\left[ \frac{1}{n},2 \right],\overline{\bigcup_{i=1}^{\infty}A_{i}}=\left( 0,2 \right],\bar{B}=\left[ 0,2 \right] Ai=(n1,2],Aˉi=[n1,2],i=1Ai=(0,2],Bˉ=[0,2]

8.是否每个开集 E ⊂ R 2 E \subset \mathbb{R}^2 ER2的每个点一定是 E E E的极限点?对 R 2 \mathbb{R}^2 R2中的闭集如果呢?
证明:
x ∈ E ⇒ ∃ r > 0 , N r ( x ) ⊂ E x \in E\Rightarrow \exists r >0, N_{r} \left( x \right) \subset E xEr>0,Nr(x)E
对于 r ′ ≥ r , N r ′ ∩ ( E \ { x } ) = ∅ r^{\prime} \ge r, N_{r^{\prime}}\cap \left( E \backslash \left\{ x \right\} \right)=\emptyset rr,Nr(E\{x})=
对于 r ′ < r r^{\prime} < r r<r,若 ∣ N r ( x ) ∣ < ∞ \left| N_{r}\left( x \right) \right|<\infty Nr(x)<,设 N r ( x ) = { x , p 1 , p 2 , ⋯   , p n } N_{r}\left( x \right)=\left\{ x, p_{1},p_{2},\cdots,p_{n} \right\} Nr(x)={x,p1,p2,,pn}
δ < min ⁡ 1 ≤ i ≤ n d ( p i , x ) \delta < \min_{1 \le i \le n} d \left( p_{i},x \right) δ<min1ind(pi,x),则 N δ ( x ) ∩ E = { x } N_{\delta}\left( x \right) \cap E=\left\{ x \right\} Nδ(x)E={x}
因此 N δ ( x ) ⊄ E N_{\delta}\left( x \right) \not \subset E Nδ(x)E,与 N δ ( x ) ⊂ N r ( x ) ⊂ E N_{\delta}\left( x \right) \subset N_{r}\left( x \right)\subset E Nδ(x)Nr(x)E矛盾
因此 x x x是极限点

E = { ( 1 n , 0 ) : n ∈ N + } ∪ { ( 0 , 0 ) } E=\left\{ \left( \frac{1}{n},0 \right):n \in \mathbb{N}_{+} \right\} \cup \left\{ \left( 0,0 \right) \right\} E={(n1,0):nN+}{(0,0)},极限点 ( 0 , 0 ) \left( 0,0 \right) (0,0)

9.令 E ∘ E^{\circ} E表集 E E E的所有内殿组成的集
(a)证明: E ∘ E^{\circ} E是开集
(b)证明: E E E是开集当且仅当 E = E ∘ E=E^{\circ} E=E
©证明:如果 G ⊂ E G \subset E GE G G G开,证明 G ⊂ E ∘ G \subset E^{\circ} GE
(d)证明: E ∘ E^{\circ} E的余集是 E E E的余集的闭包
(e) E E E的内部与 E ˉ \bar{E} Eˉ的内部是否总一样
(f) E E E的闭包与 E ∘ E^{\circ} E的闭包是否总一样
证明:
(a)
x ∈ E x \in E xE,则 ∃ r > 0 , N r ( x ) ⊂ E \exists r > 0,N_{r} \left( x \right) \subset E r>0,Nr(x)E
∀ y ∈ N r ( x ) \forall y \in N_{r}\left( x \right) yNr(x),则 ∃ s > 0 , N s ( y ) ⊂ N r ( x ) ⊂ E \exists s > 0,N_{s}\left( y \right) \subset N_{r}\left( x \right)\subset E s>0,Ns(y)Nr(x)E,进而 y ∈ E ∘ y \in E^{\circ} yE
因此 N r ( x ) ⊂ E ∘ N_{r}\left( x \right) \subset E^{\circ} Nr(x)E

(b)显然

© G = G ∘ ⊂ E ⇒ G ⊂ E ∘ G = G^{\circ} \subset E\Rightarrow G \subset E^{\circ} G=GEGE

(d)要证明 ( E ∘ ) c = E c ‾ \left( E^{\circ} \right)^c=\overline{E^c} (E)c=Ec
E ∘ ⊂ E ⇒ E c ⊂ ( E ∘ ) c ⇒ E c ‾ ⊂ ( E ∘ ) c ‾ = ( E ∘ ) c E^{\circ} \subset E\Rightarrow E^c \subset \left( E^\circ \right)^c\Rightarrow \overline{E^c} \subset \overline{\left( E^\circ \right)^c}=\left( E^\circ \right)^c EEEc(E)cEc(E)c=(E)c
p ∈ ( E ∘ ) c ⇒ p ∉ E ∘ ⇒ ∀ r > 0 , ∃ q ∈ E c , q ∈ N r ( p ) ⇒ N r ( p ) ∩ ( E c \ { p } ) ≠ ∅ ⇒ p ∈ E c ‾ p \in \left( E^{\circ} \right)^{c}\Rightarrow p \not\in E^{\circ} \Rightarrow \forall r >0, \exists q\in E^c, q\in N_{r}\left( p \right)\Rightarrow N_{r}\left( p \right)\cap \left( E^c\backslash \left\{ p \right\} \right)\neq \emptyset \Rightarrow p \in \overline{E^c} p(E)cpEr>0,qEc,qNr(p)Nr(p)(Ec\{p})=pEc

(e) E = Q , E ˉ = R , E ∘ = ∅ , ( E ˉ ) ∘ = R E=\mathbb{Q},\bar{E}=\mathbb{R},E^{\circ}=\emptyset,\left( \bar{E} \right)^{\circ}= \mathbb{R} E=Q,Eˉ=R,E=,(Eˉ)=R

(f) E = Q , E ˉ = R , E ∘ = ∅ , E ∘ ‾ = ∅ E=\mathbb{Q},\bar{E}=\mathbb{R},E^{\circ}=\emptyset,\overline{E^{\circ}}=\emptyset E=Q,Eˉ=R,E=,E=

10.设 X X X是无穷集。对于 p ∈ X , q ∈ X p \in X, q \in X pX,qX,定义
d ( p , q ) = { 1 , p ≠ q 0 , p = q d \left( p,q \right) =\begin{cases} 1, &p\neq q\\ \\ 0, &p=q \end{cases} d(p,q)= 1,0,p=qp=q
证明这是一个度量。由此所得的度量空间的哪些子集是开集?哪些是闭集?哪些是紧集?
证明:
p , q , r ∈ X p,q,r \in X p,q,rX
如果 p ≠ q , d ( p , q ) = 1 p\neq q, d\left( p,q \right)=1 p=q,d(p,q)=1, d ( p , p ) = 0 d\left( p,p \right)=0 d(p,p)=0
显然 d ( p , q ) = d ( q , p ) d \left( p,q \right)=d \left( q,p \right) d(p,q)=d(q,p)
因为 r = p r=p r=p r = q r=q r=q不能同时成立, d ( p , q ) ≤ 1 ≤ d ( p , r ) + d ( r , q ) d\left( p,q \right)\le 1 \le d \left( p,r \right) + d\left( r, q \right) d(p,q)1d(p,r)+d(r,q)

B 1 2 ( x ) ⊂ { x } B_{\frac{1}{2}}\left( x \right) \subset \left\{ x \right\} B21(x){x},因此一个点的集合就是开集,进而任意集合都是开集
因为任何集合都是开集,他们的闭集就是闭集,进而任意集合都是闭集
只有有限集合都是紧集
无限集合不是紧集,考虑开覆盖 { B 1 2 ( x ) } \left\{ B_{\frac{1}{2}}\left( x \right) \right\} {B21(x)},不能找到有限开覆盖

11.对 x ∈ R 1 , y ∈ R 1 x \in \mathbb{R}^{1}, y \in \mathbb{R}^{1} xR1,yR1,定义
d 1 ( x , y ) = ( x − y ) 2 d 2 ( x , y ) = ∣ x − y ∣ d 3 ( x , y ) = ∣ x 2 − y 2 ∣ d 4 ( x , y ) = ∣ x − 2 y ∣ d 5 ( x , y ) = ∣ x − y ∣ 1 + ∣ x − y ∣ \begin{aligned} d_{1}\left( x,y \right) &= \left( x-y \right)^2\\ d_{2}\left( x,y \right) &=\sqrt{ \left| x-y \right| }\\ d_{3}\left( x,y \right) &= \left| x^2-y^2 \right| \\ d_{4}\left( x,y \right) &=\left| x-2y \right| \\ d_{5}\left( x,y \right) &= \frac{\left| x-y \right| }{1 + \left| x-y \right| } \end{aligned} d1(x,y)d2(x,y)d3(x,y)d4(x,y)d5(x,y)=(xy)2=xy = x2y2 =x2y=1+xyxy
其中哪些是度量?哪些不是?
解:
d 1 ( 0 , 2 ) > d 1 ( 0 , 1 ) + d 1 ( 1 , 2 ) d_{1}(0,2) > d_{1}\left( 0,1 \right) + d_{1}\left( 1,2 \right) d1(0,2)>d1(0,1)+d1(1,2)
∣ x − y ∣ ≤ ∣ x − z ∣ + ∣ y − z ∣ ≤ ∣ x − z ∣ + ∣ y − z ∣ + 2 ∣ x − z ∣ ∣ y − z ∣ \left| x-y \right| \le \left| x-z \right| + \left| y-z \right| \le \left| x-z \right| + \left| y-z \right| + 2\sqrt{ \left| x-z \right| \left| y-z \right| } xyxz+yzxz+yz+2xzyz
两边开根号得出 d 2 d_{2} d2是度量
d 3 ( 1 , − 1 ) = 0 d_{3}\left( 1,-1 \right)=0 d3(1,1)=0
d 4 ( 2 , 1 ) = 0 d_{4}\left( 2,1 \right)=0 d4(2,1)=0
d ( x , y ) = ∣ x − y ∣ d \left( x,y \right)=\left| x-y \right| d(x,y)=xy是一个度量
a = d ( x , y ) , b = ( x , z ) , c = d ( y , z ) a = d\left(x,y \right),b=\left( x,z \right),c= d\left( y,z \right) a=d(x,y),b=(x,z),c=d(y,z),现在要证明 a 1 + a ≤ b 1 + b + c 1 + c \frac{a}{1 + a} \le \frac{b}{1+b}+ \frac{c}{1 + c} 1+aa1+bb+1+cc
通分
a + a b + a c + a b c ≤ b + b a + b c + a b c + c + c a + c b + a b c a +ab + ac + abc \le b + ba + bc + abc + c + ca + cb + abc a+ab+ac+abcb+ba+bc+abc+c+ca+cb+abc
显然成立

12.设 K ⊂ R 1 K \subset \mathbb{R}^{1} KR1是由 0 0 0及诸数 1 n ( n = 1 , 2 , 3 , ⋯   ) \frac{1}{n}\left( n=1,2,3,\cdots \right) n1(n=1,2,3,)组成的集。由定义直接证明(不用Heine-Borel) K K K是紧集
证明:
K = { 0 } ∪ { 1 n : n ∈ N + } K = \left\{ 0 \right\}\cup \left\{ \frac{1}{n}:n\in \mathbb{N}_{+} \right\} K={0}{n1:nN+}
{ G α } \left\{ G_{\alpha} \right\} {Gα} K K K的开覆盖
0 ∈ G α 0 , ∃ δ > 0 , ( − δ , δ ) ⊂ G α 0 0 \in G_{\alpha_{0}}, \exists \delta>0, \left( -\delta, \delta \right) \subset G_{\alpha_{0}} 0Gα0,δ>0,(δ,δ)Gα0
对于 n > 1 δ , 1 δ ∈ G α 0 n > \frac{1}{\delta}, \frac{1}{\delta} \in G_{\alpha_{0}} n>δ1,δ1Gα0
因此 G α 0 ∪ ( ⋃ i = 1 ⌊ 1 δ ⌋ G α i ) G_{\alpha_{0}} \cup \left( \bigcup_{i=1}^{\lfloor \frac{1}{\delta} \rfloor}G_{\alpha_{i}} \right) Gα0(i=1δ1Gαi) K K K的有限开覆盖,进而 K K K是紧集

13.作一个实数的紧集,使它的极限点构成一个可数集
解:
K = { 0 } ∪ { 1 n : n ∈ N + } ∪ { 1 m + 1 n : n , m ∈ N + , m } K = \left\{ 0 \right\}\cup \left\{ \frac{1}{n}:n\in\mathbb{N}_{+} \right\}\cup \left\{ \frac{1}{m}+\frac{1}{n}:n,m\in \mathbb{N}_{+}, m\right\} K={0}{n1:nN+}{m1+n1:n,mN+,m}
∀ x ∈ K , ∣ x ∣ ≤ 2 \forall x \in K, \left| x \right|\le 2 xK,x2
显然 0 , 1 m 0,\frac{1}{m} 0,m1都是 K K K的极限点
x > 1 x >1 x>1 1 + 1 p ≤ x ≤ 1 + 1 q 1 + \frac{1}{p} \le x \le 1 + \frac{1}{q} 1+p1x1+q1,进而 x x x不是极限点
0 < x < 1 0<x<1 0<x<1 x ≠ 1 m x\neq \frac{1}{m} x=m1,则 1 p + 1 < x < 1 p \frac{1}{p+1} < x < \frac{1}{p} p+11<x<p1
ε = 1 2 min ⁡ ( x − 1 p + 1 , 1 p − x ) \varepsilon = \frac{1}{2} \min \left( x-\frac{1}{p+1}, \frac{1}{p} - x \right) ε=21min(xp+11,p1x)
K ∩ ( x − ε , x + ε ) ⊂ { 1 p + 1 + 1 k : p + 1 ≤ k < 1 ε } ∪ { 1 m + 1 n : m ≤ n < 1 p + 1 − 1 p + 2 ; m = p + 2 , ⋯   , 2 p + 2 } K \cap \left( x-\varepsilon, x + \varepsilon \right) \subset\left\{ \frac{1}{p+1}+\frac{1}{k}: p + 1 \le k < \frac{1}{\varepsilon} \right\}\cup \left\{ \frac{1}{m} + \frac{1}{n}:m\le n < \frac{1}{p+1} - \frac{1}{p + 2};m=p+2,\cdots,2p+2 \right\} K(xε,x+ε){p+11+k1:p+1k<ε1}{m1+n1:mn<p+11p+21;m=p+2,,2p+2}
是一个有限集(没看懂),因此 x x x不可能是 K K K的极限点。

进而 K K K的极限点是可数集

必然存在有限个 m , n , m ≤ n m,n,m \le n m,n,mn使得 1 m + 1 n + 1 ≤ x ≤ 1 m + 1 n \frac{1}{m} +\frac{1}{n+1} \le x \le \frac{1}{m}+\frac{1}{n} m1+n+11xm1+n1(这是因为右边最多取到 2 m \frac{2}{m} m2,进而 m ≤ 2 x m \le \frac{2}{x} mx2
0 < ε < 1 2 min ⁡ { min ⁡ ( x − 1 m − 1 n + 1 , 1 m + 1 n − x ) : 1 m + 1 n + 1 ≤ x ≤ 1 m + 1 n ; m ≤ n } 0<\varepsilon<\frac{1}{2} \min \left\{ \min\left( x- \frac{1}{m} -\frac{1}{n+1}, \frac{1}{m} +\frac{1}{n} - x\right): \frac{1}{m} +\frac{1}{n+1} \le x \le \frac{1}{m}+\frac{1}{n};m\le n\right\} 0<ε<21min{min(xm1n+11,m1+n1x):m1+n+11xm1+n1;mn}
进而 N ε ( x ) ∩ K = ∅ N_{\varepsilon}\left( x \right) \cap K=\emptyset Nε(x)K=

14.给一个开区间 ( 0 , 1 ) \left( 0,1 \right) (0,1),造一个没有有限子覆盖的开覆盖的实例
解:
A n = ( 1 n , n − 1 n ) , n = 3 , 4 , ⋯ A_{n}=\left( \frac{1}{n}, \frac{n-1}{n} \right),n=3,4,\cdots An=(n1,nn1),n=3,4,
1 n < x < n − 1 n ⇒ n > 1 min ⁡ ( x , 1 − x ) , \frac{1}{n}<x < \frac{n-1}{n}\Rightarrow n >\frac{1}{\min \left( x, 1-x \right) }, n1<x<nn1n>min(x,1x)1,
如果 n > 1 min ⁡ ( x , 1 − x ) n >\frac{1}{\min \left( x, 1-x \right) } n>min(x,1x)1,有 x ∈ A n x \in A_{n} xAn
进而 ⋃ n = 3 ∞ A n \bigcup_{n=3}^{\infty}A_{n} n=3An能覆盖 ( 0 , 1 ) \left( 0,1 \right) (0,1)
任意有限覆盖为 ( 1 k , k − 1 k ) \left( \frac{1}{k}, \frac{k-1}{k} \right) (k1,kk1)

15 如果 { K α } \left\{ K_{\alpha} \right\} {Kα}是度量空间 X X X的一组紧子集,并且 { K α } \left\{ K_{\alpha} \right\} {Kα}中任意有限个集的交都不是空集,那么 ∩ K α \cap K_{\alpha} Kα也不是空集。
如果把紧这个词换成“闭的”或者“有界的”,那么结论不成立(例如,在 R 1 \mathbb{R}^{1} R1里)

证明:
A n = ( 0 , 1 n ) , B n = [ n , ∞ ) A_{n}=\left( 0, \frac{1}{n} \right), B_{n}=\left[ n, \infty \right) An=(0,n1),Bn=[n,)
任意有限个集的交 ∩ i A i = ( 0 , 1 k ) , ∩ i B i = [ k , ∞ ) \cap_{i} A_{i}=\left(0, \frac{1}{k} \right), \cap_{i} B_{i} = \left[ k,\infty \right) iAi=(0,k1),iBi=[k,)
但是 ⋂ n = 1 ∞ A n = ⋂ n = 1 ∞ B n = ∅ \bigcap_{n=1}^{\infty}A_{n}=\bigcap_{n=1}^{\infty}B_{n}=\emptyset n=1An=n=1Bn=

16.把所有有理数组成的集 Q \mathbb{Q} Q看成度量空间,而 d ( p , q ) = ∣ p − q ∣ d\left( p,q \right)=\left| p-q \right| d(p,q)=pq.
E = { p ∈ Q : 2 < p 2 < 3 } E=\left\{ p \in \mathbb{Q}:2 < p^2 < 3 \right\} E={pQ:2<p2<3}
证明 E E E Q \mathbb{Q} Q中的有界闭集,但 E E E不是紧集, E E E是否为 Q \mathbb{Q} Q中的开集

证明:
∀ x ∈ E , ∣ x ∣ < 2 \forall x \in E, \left| x \right| <2 xE,x<2,因此 E E E有界
不妨假设 p ∈ Q + p \in \mathbb{Q}_{+} pQ+ E E E的极限点
∀ ε > 0 , ∃ q ∈ E , q > 0 , d ( p , q ) = ∣ p − q ∣ < ε \forall \varepsilon > 0, \exists q \in E,q >0, d\left( p,q \right)=\left| p-q \right| < \varepsilon ε>0,qE,q>0,d(p,q)=pq<ε,进而 p + ε > q p + \varepsilon > q p+ε>q
因此 ( p + ε ) 2 − 2 > q 2 − 2 > 0 \left( p+\varepsilon \right)^2-2>q^2-2>0 (p+ε)22>q22>0,于是 p 2 + 2 p ε + ε 2 > 2 p^2 + 2p \varepsilon + \varepsilon^2 > 2 p2+2+ε2>2
ε \varepsilon ε的任意性, p 2 ≥ 2 p^2 \ge 2 p22,显然 p 2 ≠ 2 p^2\neq 2 p2=2,因此 p 2 > 2 p^2 > 2 p2>2
类似地 p < q + ε p < q + \varepsilon p<q+ε,得出 p 2 < 3 p^2 <3 p2<3
因此 p ∈ E p \in E pE,进而 E E E是闭集

E E E Q \mathbb{Q} Q中是紧集,那么在 R \mathbb{R} R中也是,然而 E E E R \mathbb{R} R中不是闭集,因此不是紧集,矛盾

显然 E E E Q \mathbb{Q} Q中的开集

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值