pandas学习

读取

csv

df = pd.read_csv(path)

excel

单个sheet

不写sheet_name默认读第一个

df = pd.read_excel(path, sheet_name='sheet_name')
df = pd.read_excel(path, sheet_name=0)

多个sheet

excel_reader = pd.ExcelFile(path)
sheet_names = excel_reader.sheet_names
df1 = excel_reader.parse(sheet_name=sheet_names[0])
df2 = pd.read_excel('excel1.xlsx', sheet_name=sheet_names[0])

写入

csv

df.to_csv(path, index=False)
# 写入中文的话
df.to_csv(path, index=False, encoding='utf_8_sig')

excel

单个sheet

sheet_name不写默认Sheet1

df.to_excel(path, index=False, sheet_name='sheet_name')
# 写入中文的话
df.to_excel(path, index=False, sheet_name='sheet_name', encoding='utf_8_sig')

多个sheet

if_sheet_exists表示已经存在这个sheet之后的行为,有四种

  • error: 报错
  • new: 创建一个新的sheet,名字由excel引擎命名
  • replace: 先删后增加(其实就是直接替换)
  • overlay: 直接覆盖(不删除原来的元素)
with pd.ExcelWriter(path, mode='a', if_sheet_exists='replace') as writer:
    df1.to_excel(writer, sheet_name='Sheet1', index=False)
    df2.to_excel(writer, sheet_name='Sheet2', index=False)

插入/修改一行

插入末尾

不是每一列都要填数据

data={'col1': 100, 'col3': 101, 'col4': 102}
#df=df.append(data, ignore_index=True)
df = pd.concat([df, pd.DataFrame.from_records([data])], ignore_index=True)

data={}
#df=df.append(data, ignore_index=True)

df = pd.concat([df, pd.DataFrame.from_records([data])], ignore_index=True)

插入任意行

比如第k行
(不是每一列都要填数据)

data={'col1': 100, 'col3': 101, 'col4': 102}
#df = df[:k].append(data, ignore_index=True).append(df[k:], ignore_index=True)
df = pd.concat([df[:5], pd.DataFrame.from_records([data]), df[5:]], ignore_index=True)

data={}
#df = df[:k].append(data, ignore_index=True).append(df[k:], ignore_index=True)
df = pd.concat([df[:5], pd.DataFrame.from_records([data]), df[5:]], ignore_index=True)

修改一行

df.loc[3] = [1, pd.NA, '5']

修改单元格

df.loc[idx, 'col'] = data

求平均

df.mean(axis=0, numeric_only=True)

如果要添加进取的话

#df = df.append(df.mean(axis=0, numeric_only=True), ignore_index=True)
df = pd.concat([df, pd.DataFrame.from_records([df.mean(axis=0, numeric_only=True)])], ignore_index=True)

暂时没用到,再说把

保留几位小数

全部

df = df.round(2)

不同列不同精度

df = df.round({'col1': 2, 'col3': 4})
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值