在对 pyspark的sparksql 代码中测试中, 在spark1.6中使用dataframe的map对象时,如下代码
session_pv = sqlContext.sql("""SELECT session_id,COUNT(1) AS cnt FROM tmp_page_views GROUP BY session_id ORDER BY cnt DESC LIMIT 20""")\
.map(lambda output: output.session_id + "\t"+ str(output.cnt))
是可以正常运行的,是因为 在Spark2.0之前,spark_df.map是spark_df.rdd.map()的别名,但在我的spark2.1.1的环境中,就会报DataFrame' object has no attribute 'map' 的错误,所以必须显式调用,将其转换为RDD并通过执行spark_df.rdd.map(),代码必须写成:
session_pv = sqlContext.sql("""SELECT session_id,COUNT(1) AS cnt FROM tmp_page_views GROUP BY session_id ORDER BY cnt DESC LIMIT 20""")\
.rdd.map(lambda output: output.session_id + "\t"+ str(output.cnt))
执行成功。结果如下: