在日常的艺术创作与生活中,我们时常渴望将钟爱的艺术风格融入各类内容之中。本文将带您了解一款前沿且免费的风格迁移模型——StyleShot,并提供直接体验的在线平台。
开源链接:
https://github.com/open-mmlab/StyleShot
论文链接:
https://arxiv.org/abs/2407.01414
官方网站:
https://styleshot.github.io/
在线应用:
https://openxlab.org.cn/apps/detail/lianchen/StyleShot
StyleShot,作为当前最先进的风格迁移模型之一,用户只需要上传一张图片,无需额外训练即可实现任意风格的迁移至给定的内容。 无论是 3D 风格的城镇,还是简笔风格的小狗,亦或是油画风格的小车,StyleShot 均能一键快速生成,效果简直不要太好~
方法介绍
借助扩散模型的强大能力实现任意图的风格到任意的内容的迁移存在两大难点:
-
生成的图片难以还原用户输入图像的风格细节
-
生成的图片常常会有输入图像内容的泄露。
为应对这些挑战,StyleShot 巧妙地设计了能够精确复原风格细节并减少内容泄露的框架。
其框架如下图所示,用户输入的风格图像将通过专门设计的编码器提取风格特征,随后在 UNet 中进行Cross-Attention 运算以实现风格注入。
StyleShot 的核心是其独创的多级风格感知编码器,借助这一设计,StyleShot 能够精准复原用户输入的风格细节,并有效减少内容泄露。
应用介
支持文本作为内容的风格迁移
StyleShot 能够接收文本作为内容输入,它能够将输入图像的风格迁移到由任意文本提示词所描述的内容上。
支持图片作为内容的风格迁移
StyleShot 同时也具备接受图像作为内容输入的能力,它能够将一个图像的风格平滑地迁移到另一个图像的内容之上。
ps:还可以应用动效模型(如 DynamiCrafter)与音效生成模型(如 FoleyCrafter)模型到 StyleShot 生成的风格图片上以创造出风格独特的音视频作品。