【BZOJ3622】已经没有什么好害怕的了

【题目链接】

【思路要点】

  • 令\(K=\frac{N+K}{2}\),问题等价于存在恰好\(K\)对大于关系的最大匹配数。
  • 直接DP难以表示状态,考虑容斥原理。
  • 我们选定一个\(A\)中的集合,规定该集合中的点一定要大于\(B\)集合中与其相匹配的点,其余点不做要求,将符合条件的方案数加入\(Cnt_{Size}\),其中\(Size\)为所选集合的大小。
  • 定义\(Ans_i\)为存在恰好\(i\)对大于关系的最大匹配数,我们希望求出\(Ans_k\)。
  • 若我们能够求出\(Cnt\)数组,则有\(Ans_i=Cnt_i-\sum_{j=i+1}^{N}Ans_j*\binom{j}{i}\)。
  • 考虑如何求出\(Cnt\)数组。
  • 记\(A_i\)表示\(A\)中每一个数比\(B\)中的数大的个数。
  • 对\(A\)中的元素按照\(A_i\)排序,考虑记\(dp_{i,j}\)表示考虑了\(A\)中前\(i\)个元素,选取\(j\)个匹配了\(B\)中较小的元素(其余\(A\)中元素也可以匹配\(B\)中较小的元素)。
  • 注意到由于\(A_i\)是有序的,之前所匹配的\(j\)个\(B\)中的元素也一定是\(A\)中第\(i\)个元素能够匹配的元素,因此有\(dp_{i,0}=1,dp_{i,j}=dp_{i-1,j}+max(A_i-j+1,0)*dp_{i-1,j-1}\)。
  • 那么\(Cnt_i=dp_{N,i}*(N-i)!\)。
  • 时间复杂度\(O(N^2)\)。

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2005;
const int P = 1e9 + 9;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, k, a[MAXN], b[MAXN], ans[MAXN];
int fac[MAXN], inv[MAXN];
int dp[MAXN][MAXN];
int c(int x, int y) {return 1ll * fac[x] * inv[y] % P * inv[x - y] % P; }
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int main() {
	read(n), read(k);
	if ((n + k) & 1) {
		printf("0\n");
		return 0;
	}
	fac[0] = 1;
	for (int i = 1; i <= n; i++)
		fac[i] = 1ll * fac[i - 1] * i % P;
	inv[n] = power(fac[n], P - 2);
	for (int i = n - 1; i >= 0; i--)
		inv[i] = inv[i + 1] * (i + 1ll) % P;
	k = (n + k) / 2;
	for (int i = 1; i <= n; i++)
		read(a[i]);
	for (int i = 1; i <= n; i++)
		read(b[i]);
	for (int i = 1; i <= n; i++) {
		int tmp = 0;
		for (int j = 1; j <= n; j++)
			if (a[i] >= b[j]) tmp++;
		a[i] = tmp;
	}
	sort(a + 1, a + n + 1);
	dp[0][0] = 1;
	for (int i = 1; i <= n; i++) {
		dp[i][0] = 1;
		for (int j = 1; j <= i; j++)
			dp[i][j] = (dp[i - 1][j] + 1ll * dp[i - 1][j - 1] * max(a[i] - j + 1, 0)) % P;
	}
	for (int i = n; i >= k; i--) {
		ans[i] = 1ll * dp[n][i] * fac[n - i] % P;
		for (int j = i + 1; j <= n; j++)
			ans[i] = (ans[i] - 1ll * ans[j] * c(j, i) % P + P) % P;
	}
	writeln(ans[k]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值