【CodeForces】Mail.Ru Cup 2018 Round 1 (Div. 1 + Div. 2) 题解

【比赛链接】

【题解链接】

**【A】**Elevator or Stairs?

【思路要点】

  • 按照题意计算两种方式的用时,取较优的方案采纳。
  • 时间复杂度 O ( 1 ) O(1) O(1)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int main() {
	int x, y, z, t1, t2, t3;
	read(x), read(y), read(z), read(t1), read(t2), read(t3);
	int s = abs(x - y) * t1;
	int e = abs(x - z) * t2 + abs(x - y) * t2 + t3 * 3;
	if (e <= s) printf("YES\n");
	else printf("NO\n");
	return 0;
}

**【B】**Appending Mex

【思路要点】

  • 显然在操作合法的情况下,序列中的数形成的集合是一个仅包含最小的 x x x 个自然数的集合,因此,可能加入的数应当是 0 0 0 x x x 中的一个整数,按照此判断标准检验操作序列的合法性即可。
  • 时间复杂度 O ( N ) O(N) O(N)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int main() {
	int n, Max = -1; read(n);
	for (int i = 1; i <= n; i++) {
		int x; read(x);
		if (x > Max + 1) {
			printf("%d\n", i);
			return 0;
		}
		chkmax(Max, x);
	}
	printf("-1\n");
	return 0;
}

**【C】**Candies Distribution

【思路要点】

  • 计算 a l l i = l i + r i all_i=l_i+r_i alli=li+ri a l l i all_i alli 表示大于 a i a_i ai 的数的个数。
  • 因此,实际上所有 a i a_i ai 的大小关系已经确定了,我们根据 a l l i all_i alli 构造出一组符合条件的 a i a_i ai ,再检验其是否满足 l i l_i li r i r_i ri 的限制即可。
  • 时间复杂度 O ( N 2 ) O(N^2) O(N2)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, a[MAXN], l[MAXN], r[MAXN];
int rnk[MAXN], pos[MAXN];
bool cmp(int x, int y) {
	return l[x] + r[x] < l[y] + r[y];
}
int main() {
	read(n);
	for (int i = 1; i <= n; i++)
		read(l[i]);
	for (int i = 1; i <= n; i++)
		read(r[i]);
	for (int i = 1; i <= n; i++)
		pos[i] = i;
	sort(pos + 1, pos + n + 1, cmp);
	for (int i = 1; i <= n; i++) {
		int now = pos[i], last = pos[i - 1];
		if (i == 1 || l[now] + r[now] != l[last] + r[last]) rnk[i] = i;
		else rnk[i] = rnk[i - 1];
		a[now] = n - rnk[i] + 1;
	}
	for (int i = 1; i <= n; i++) {
		int cnt = 0;
		for (int j = 1; j <= i - 1; j++)
			if (a[j] > a[i]) cnt++;
		if (cnt != l[i]) {
			printf("NO\n");
			return 0;
		}
		cnt = 0;
		for (int j = i + 1; j <= n; j++)
			if (a[j] > a[i]) cnt++;
		if (cnt != r[i]) {
			printf("NO\n");
			return 0;
		}
	}
	printf("YES\n");
	for (int i = 1; i <= n; i++)
		printf("%d ", a[i]);
	return 0;
}

**【D】**Changing Array

【思路要点】

  • s i s_i si a i a_i ai 的前缀异或和,一个区间 [ l , r ] [l,r] [l,r] 的区间异或和即为 s r ⊕ s l − 1 s_r\oplus s_{l-1} srsl1 ,区间 [ l , r ] [l,r] [l,r] 的区间异或和为 0 0 0 当且仅当 s r = s l − 1 s_r=s_{l-1} sr=sl1
  • 题目中对一个数 a i a_i ai 进行取反操作相当于执行 a i = a i ⊕ ( 2 k − 1 ) a_i=a_i\oplus (2^k-1) ai
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值