最小二乘法及推导

最小二乘法(Least Square Method):
  通过最小误差的平方和寻找数据的最佳函数,利用该方法可简便求得未知的数据,并使求得的数据与实际数据简单间的误差平法和最小。

推导过程:
1、用于求解平方损失函数的解析解
2、

一元线性回归的目标是找到一条直线来拟合数据,使得拟合线距离数据点的误差最小化。最小二乘法是一种常见的用来求解线性回归参数的方法。 假设我们有一组数据集合 {(x1, y1), (x2, y2), ..., (xn, yn)},其中 xi 是自变量,yi 是因变量。一元线性回归模型可以表示为 y = β0 + β1*x,其中 β0 和 β1 是待求的参数。 最小二乘法的目标是找到使得误差平方和最小化的参数值。我们定义误差 e = y - (β0 + β1*x),其中 e 是实际值与预测值之间的差异。我们将误差平方和定义为损失函数,即 L = ∑(e^2) = ∑((y - (β0 + β1*x))^2)。我们的目标是最小化损失函数 L。 为了求解最小二乘法的参数,我们需要对损失函数 L 进行优化。我们可以通过对 β0 和 β1 分别求导,令导数为 0,从而得到参数的闭式解。 首先对 β0 求导: ∂L/∂β0 = -2∑(y - (β0 + β1*x)) 令导数为 0,得到: ∑y - n*β0 - β1*∑x = 0 解出 β0,得到: β0 = (∑y - β1*∑x)/n 然后对 β1 求导: ∂L/∂β1 = -2∑x(y - (β0 + β1*x)) 令导数为 0,得到: ∑xy - β0*∑x - β1*∑(x^2) = 0 将 β0 的值代入上式,得到: ∑xy - (∑y - β1*∑x)/n * ∑x - β1*∑(x^2) = 0 整理后可得: ∑xy - (∑x*∑y)/n = β1*(∑(x^2) - (∑x)^2/n) 解出 β1,得到: β1 = (∑xy - (∑x*∑y)/n) / (∑(x^2) - (∑x)^2/n) 至此,我们得到了一元线性回归最小二乘法的参数推导
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值