自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 [GFL]Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Dete

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection会议:CVPR 2021论文:https://arxiv.org/pdf/2006.04388.pdf代码:https://github.com/implus/GFocalAbstract目前的模型大多存在两个问题:问题一:在训练和推理的过程中,质量评估和分类的方法不一致:他们往往被独立训练

2021-07-14 17:12:50 899

原创 [TopoCount] Localization in the Crowd with Topological Constraints

Localization in the Crowd with Topological Constraints会议:CVPR 2021论文:https://arxiv.org/pdf/2012.12482.pdf代码:https://github.com/TopoXLab/TopoCount创新点:作者提出了一种新的拓扑方法来解决定位问题,将问题视为预测一个binary mask提出了persistence lossAbstract密集人群的数据集往往是点标注,然而,一个点没有尺度信息,

2021-05-06 16:32:51 618

原创 李宏毅老师Transformer课程笔记 [Attention is all your need]

Transformer会议:NIPS 2017论文:https://arxiv.org/pdf/1706.03762.pdfinput是x1~x4x_1~x_4x1​~x4​,经过embending之后得到a1~a4a_1~a_4a1​~a4​,输入到self-attention中。对于每一个input,都乘上三个不同的权值矩阵,得到三个不同的向量q,k,vq,k,vq,k,v。qqq:query (to match others) qi=Wqaiq^i=W^qa^iqi=Wqaikkk:k

2021-04-08 15:12:46 366

原创 End-to-End Object Detection with Fully Convolutional Network

会议:CVPR 2021论文:https://arxiv.org/pdf/2012.03544.pdf代码:https://github.com/Megvii-BaseDetection/DeFCN创新点:基于FCOS,首次在dense prediction上利用全卷积结构做到E2E,即无NMS后处理。提出了POTO,实现了one-to-one的label assignment。提出了3D Max Filtering以增强feature在local区域的表征能力,并提出用one-to-man.

2021-04-08 15:07:27 538

原创 End-to-End Object Detection with Transformers

End-to-End Object Detection with Transformers会议:2020 ECCV论文:https://arxiv.org/abs/2005.12872代码:https://github.com/facebookresearch/detr创新点:\作者摒弃了基于anchor、NMS等这种需要手工设计的模块,和R-CNN系列、YOLO系列,以及其他anchor-free的方法都不同,减少检测器对先验性息和后处理的依赖,做到了真正的end2end。使用类似机器翻译

2021-03-30 10:56:07 477

原创 FCOS: Fully Convolutional One-Stage Object Detection

FCOS: Fully Convolutional One-Stage Object Detection会议:ICCV 2019论文:https://arxiv.org/abs/1904.01355代码:https://tinyurl.com/FCOSv1创新点:anchor-free、proposal-free,提出了中心度center-ness的思想。Abstract作者提出了一个基于FCN的one-stage检测器FCOS,与主流的方法如R-CNN系列不同,FCOS is anc

2021-03-30 10:47:32 380

原创 EfficientDet

EfficientDetCVPR 2020作者:谷歌大脑论文:https://arxiv.org/pdf/1911.09070.pdf代码(官方tensorflow):https://github.com/google/automl/tree/master/efficientdet代码(最强pytorch复现):https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch创新点:提出了BiFPN,可更好地融合各个尺度的特征和Eff

2020-12-17 11:01:05 193

原创 EfficientNet

EfficientNetICML 2019作者:谷歌大脑论文:https://arxiv.org/pdf/1905.11946.pdf代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet创新点:提出一个新的网络尺寸缩放的方法使用NAS搜索最优的网络结构Compound Scaling那么如何衡量网络尺寸呢,最直观的当然是网络中的参数量,如下图所示,横轴为网络中参数量,纵轴为网络的精度

2020-12-17 10:57:46 833

原创 YOLO v1学习笔记

YOLO v1论文:https://arxiv.org/abs/160.400640代码:https://github.com/pjreddie/darknet创新点:将整张图片作为网络的输入,直接在输出层对BBox的位置和类别进行回归。简介YOLO意思是You Only Look Once,创造性的将候选区和对象识别这两个阶段合二为一,属于one-stage的检测模型。整体上来说,首先将图片resize到448×448,送入到CNN网络之后,经过进一步预测得到检测的结果。YOLO是用

2020-11-16 15:07:43 272

原创 论文学习:Context-Aware Crowd Counting

CANContext-Aware Crowd CountingCVPR 2019洛桑联邦理工学院论文:https://arxiv.org/pdf/1811.10452.pdf代码:https://github.com/weizheliu/Context-Aware-Crowd-CountingInstruction作者提出了一种end2end的网络,它可以在多个感受野(尺度)下进行特征提取,并且学习图像中的重要特征,从而解决快速尺度变化问题。这篇文章是直接将多尺度的上下文信息整合到这个en

2020-11-10 08:50:31 1080

原创 Tiny Person数据集&基于它的TOD冠亚军方案

Scale Match for Tiny Person DetectionWACV2020中国科学院大学论文:https://arxiv.org/abs/1912.10664代码:https://github.com/ucas-vg/TinyBenchmark创新点:提出了一个称为TinyPerson的新基准,TinyPerson在海上和海滩场景中代表的人分辨率很低,主要是少于20个像素,为长距离和大量背景的微小物体检测打开了一个有希望的方向。提出了一个尺度匹配的方法,使两个数据集之间的特征

2020-11-09 08:54:44 7121 3

原创 Recovering High Dynamic Range Radiance Maps from Photographs

HDRRecovering High Dynamic Range Radiance Maps from Photographs1997关键参数radiance:描述物体表面单位面积上的能量分布,和方向有关。irradiance EEE:描述物体表面单位面积总的入射能量,和方向无关。比如,用来描述传感器像元的入射光强(来自于不同方向的环境光的累加)。XXX:曝光量,它被定义为EEE和Δt\Delta tΔt的乘积。Δt\Delta tΔt:曝光时间DDD:光密度ZZZ

2020-10-28 10:36:04 606

原创 [MSA-Net]Multi-Scale Attention Network学习笔记

MSA-NetMulti-Scale Attention Network for Crowd Counting2019作者:亚马逊论文:https://arxiv.org/abs/1901.06026创新点:在backbone中就产生了多尺度的density map,经过上采样后,加入软注意力机制进行加权叠加。提出了一个scale-aware loss,但是实验结果好像表明效果不大。Baseline network for crowd counting一个关于密度图的解释[链接]M

2020-10-24 16:06:22 2731 1

原创 小目标检测模型总结+SNIP+SNIPER

小目标检测在MS COCO数据集中,对于面积小于32*32的物体,MS COCO就认为它是小物体,在评测时,会对这个范围内的物体计算APsmall。在行人库CityPerson中,原图大小为1024*2048,小目标定义为高度小于75的目标。目前小目标检测的方法大致有一下4类(不过这是2018年的回答了):Scale最简单粗暴的方法就是放大图片。这就是在尺度上做文章,如FPN(Feature Pyramid Network),SNIP(An Analysis of Scale Invarian

2020-10-11 16:45:20 5434 1

原创 R-CNN + Fast R-CNN + SPP Net + Faster R-CNN详解

R-CNN全家桶R-CNN是将CNN方法引入目标检测领域, 大大提高了目标检测效果,可以说改变了目标检测领域的主要研究思路, 紧随其后的系列文章:R-CNN, Fast R-CNN, Faster R-CNN 。R-CNNRich feature hierarchies for accurate object detection and semantic segmentationCVPR2014作者:Ross Girshick论文:https://openaccess.thecvf.com/co

2020-09-25 09:28:02 692

原创 Squeeze-and-Excitation Networks(SENet) 学习笔记

1. 简介作者提出了一个SE块的概念,它是根据channel之间的相关性来进行显式建模,从而实现自适应地channel-wise上的特征响应,把重要的特征进行强化、不重要的特征进行抑制来提升准确率。2. 网络结构FtrF_trFt​r是传统的卷积结构,输入为H′×W′×C′H'\times W'\times C'H′×W′×C′的XXX,和H×W×CH\times W\times CH×W×C的UUU。SENet增加的是UUU后面的部分:首先对UUU进行一个Global Average Pooli

2020-08-13 18:53:26 321

转载 神经网络中的Batch和Epoch

转载自:蜂口知道随机梯度下降法是一种具有大量超参数的学习算法。通常会使初学者感到困惑的两个超参数: Batch大小和Epoch数量,它们都是整数值,看起来做的事情是一样的。在这篇文章中,您将发现随机梯度下降中Batch和Epoch之间的差异。阅读这篇文章后,你会知道:·随机梯度下降是一种迭代学习算法,它使用训练数据集来更新模型。·批量大小是梯度下降的超参数,在模型的内部参数更新之前控制训练样本的数量。·Epoch数是梯度下降的超参数,其控制通过训练数据集的完整传递的数量...

2020-07-31 20:46:30 561

原创 Typora公式常用代码

上下标公式 代码 x^{2} x_{2} 分式公式 代码 \frac{1}{2} 求和公式 代码 \sum{a} \sum_{n=1}^{100}{a_n}

2020-07-29 16:52:21 1189

原创 深度学习基础

【第一部分】视频学习1. 传统机器学习 & 深度学习数据依赖性深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度学习算法的性能并不好。这是因为深度学习算法需要大量的数据来完美地理解它。另一方面,在这种情况下,传统的机器学习算法使用制定的规则,性能会比较好。特征处理在机器学习中,大多数应用的特征都需要专家确定然后编码为一种数据类型。特征可以使像素值、形状、纹理、位置和方向。大多数机器学习算法的性能依赖于所提取的特征的准确度。深度学习尝试从数据中直

2020-07-27 17:11:17 358

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除