人群计数
文章平均质量分 92
M1kk0
这个作者很懒,什么都没留下…
展开
-
[TopoCount] Localization in the Crowd with Topological Constraints
Localization in the Crowd with Topological Constraints会议:CVPR 2021论文:https://arxiv.org/pdf/2012.12482.pdf代码:https://github.com/TopoXLab/TopoCount创新点:作者提出了一种新的拓扑方法来解决定位问题,将问题视为预测一个binary mask提出了persistence lossAbstract密集人群的数据集往往是点标注,然而,一个点没有尺度信息,原创 2021-05-06 16:32:51 · 618 阅读 · 0 评论 -
论文学习:Context-Aware Crowd Counting
CANContext-Aware Crowd CountingCVPR 2019洛桑联邦理工学院论文:https://arxiv.org/pdf/1811.10452.pdf代码:https://github.com/weizheliu/Context-Aware-Crowd-CountingInstruction作者提出了一种end2end的网络,它可以在多个感受野(尺度)下进行特征提取,并且学习图像中的重要特征,从而解决快速尺度变化问题。这篇文章是直接将多尺度的上下文信息整合到这个en原创 2020-11-10 08:50:31 · 1080 阅读 · 0 评论 -
Tiny Person数据集&基于它的TOD冠亚军方案
Scale Match for Tiny Person DetectionWACV2020中国科学院大学论文:https://arxiv.org/abs/1912.10664代码:https://github.com/ucas-vg/TinyBenchmark创新点:提出了一个称为TinyPerson的新基准,TinyPerson在海上和海滩场景中代表的人分辨率很低,主要是少于20个像素,为长距离和大量背景的微小物体检测打开了一个有希望的方向。提出了一个尺度匹配的方法,使两个数据集之间的特征原创 2020-11-09 08:54:44 · 7121 阅读 · 3 评论 -
[MSA-Net]Multi-Scale Attention Network学习笔记
MSA-NetMulti-Scale Attention Network for Crowd Counting2019作者:亚马逊论文:https://arxiv.org/abs/1901.06026创新点:在backbone中就产生了多尺度的density map,经过上采样后,加入软注意力机制进行加权叠加。提出了一个scale-aware loss,但是实验结果好像表明效果不大。Baseline network for crowd counting一个关于密度图的解释[链接]M原创 2020-10-24 16:06:22 · 2731 阅读 · 1 评论