AI大模型开发-2、智谱清言大模型API调用教程,还有免费大模型供你使用(具体是否可以商用,请自行调研)

前言

本章旨在为读者奉献一份实用的操作指南,深入探索如何高效利用智谱清言大模型平台的卓越功能。我们将从API key创建的基础知识开始,寻找开发文档,逐步引导用户通过实际案例。

一、智谱清言介绍

二、智谱AI大模型开放平台初使用

1、平台注册和使用

  1. 进入 智谱AI大模型开放平台 官网:https://bigmodel.cn/
  2. 注册、登陆并实名。自行操作即可。

2、创建 Api-key

  1. 登陆后,进入官网主页,点击右上角的个人头像,然后进入 个人中心页面。如下图所示。
    在这里插入图片描述
  2. 个人中心 页面,在左侧选择 项目管理 中的 API keys 。然后点击右上角的 添加新的API Key,只填写一个名称即可。就可以出现下面的列表的API keys,我这里创建过两个了。
    在这里插入图片描述
    API keys,创建成功就可以拿着API key 去调用API 发请求 问
### 如何使用智谱清API进行图片分析 为了利用智谱清API执行图片分析任务,开发者需遵循一系列特定流程来准备环境并编写相应的代码逻辑。首先应当完成API访问权限的申请工作[^3]。 一旦获得了有效的API Key之后,就可以着手构建求以发送待分析图像给服务器端口。下面是一个简单的Python脚本实例用于展示如何向智谱清提交一张本地存储的照片文件来进行识别处理: ```python import requests from base64 import b64encode def analyze_image(api_key, image_path): url = "https://api.example.com/vision/analyze" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } with open(image_path, 'rb') as img_file: encoded_string = b64encode(img_file.read()).decode('utf-8') payload = {"image": encoded_string} response = requests.post(url=url, json=payload, headers=headers) return response.json() result = analyze_image("your_api_key_here", "./path_to_your_image.jpg") print(result) ``` 此段程序实现了读取指定路径下的JPEG格式图片,并将其转换成Base64编码字符串形式作为POST求体的一部分上传至远程服务接口;随后接收来自服务器返回的结果数据包并打印出来进一步解析或可视化呈现[^1]。 需要注意的是,在实际应用开发当中可能还会涉及到更多细节配置选项以及错误异常情况的妥善管理等问题,建议仔细阅读官方提的完整版文档说明材料以便更好地掌握整个过程中的要点和技术难点[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java冯坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值