2020-08-06

行星轮系转速转矩计算(引用他人)
作者:demobilize
链接:https://www.zhihu.com/question/264462816/answer/352743028
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

1、简单行星轮系转速关系:设nS、nR、nC分别为太阳轮S、齿圈R和行星架C的转速,α为齿圈与太阳轮的齿比或节圆半径比(α称为行星轮系结构参数,大于1)。如将整个轮系看作在以-nC转动,则可认为行星架C没有转动,行星轮系等效于定轴轮系,故有:(nS-nC)∕(nR-nC)=-α 变形得:nS+αnR-(1+α)nC=0 此式称为行星轮系转速特征方程2、简单行星轮系转矩关系:设FC为行星架上行星轮P的回转中心点的作用力,FS、FR分别为太阳轮S和齿圈R受到的力, rS、rR分别为太阳轮S、齿圈R的节圆半径(到共同回转中心),rC为行星架上行星轮P的回转中心点到共同回转中心的半径,rP为行星轮P的节圆半径,TS、TC、TR分别为太阳轮S、行星架C、齿圈R对行星轮P的作用力点对共同回转中心的转矩。
在这里插入图片描述
忽略轮系各转轴内摩擦力及各齿轮啮合摩擦力,根据作用力与反作用力定理及行星轮P平面力系平衡条件有:FC=-(FR+FS) (1) TC=-(TR+TS) (2)FR=FS (3) FC=-2FR=-2FS (4)即FS:FR:FC =1:1:-2 (5)由rS、rR、rC的几何关系可知:rS:rR:rC =1:α:(1+α)/2 (6)因: TS=FS×rS TR=FR×rR TC=FC×rC将(5)×(6)得:TS:TR:TC=1:α:-(1+α) 此式就是简单行星轮系太阳轮S、行星架C、齿圈R之间的转矩关系从转速特征方程和转矩关系式可看出行星轮系3个基本传动构件之间的转矩比值与转速比值互为倒数,这与普通定轴轮系传动比的性质是相同的。其原因是当忽略轮系传动各种摩擦损耗(即假设轮系传动效率为100%)时,传动轮系输入与输出功率守恒,因此转矩关系式也可通过转速特征方程和轮系传动功率守恒即TS×nS+TR×nR +TC×nC=0推出。发布于 2018-03-28

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值