tensorflow学习5-RNN网络

1.原理图:

在这里插入图片描述
在这里插入图片描述

2.代码:

import numpy as np
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data

mnist = input_data.read_data_sets("data/", one_hot=True)
trainimgs, trainlabels, testimgs, testlabels \
 = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
ntrain, ntest, dim, nclasses \
 = trainimgs.shape[0], testimgs.shape[0], trainimgs.shape[1], trainlabels.shape[1]
print ("MNIST loaded")

diminput  = 28
dimhidden = 128
dimoutput = nclasses
nsteps    = 28
weights = {
    'hidden': tf.Variable(tf.random_normal([diminput, dimhidden])),
    'out': tf.Variable(tf.random_normal([dimhidden, dimoutput]))
}
biases = {
    'hidden': tf.Variable(tf.random_normal([dimhidden])),
    'out': tf.Variable(tf.random_normal([dimoutput]))
}


def _RNN(_X, _W, _b, _nsteps, _name):
    # 1. Permute input from [batchsize, nsteps, diminput]
    #   => [nsteps, batchsize, diminput]
    _X = tf.transpose(_X, [1, 0, 2])
    # 2. Reshape input to [nsteps*batchsize, diminput]
    _X = tf.reshape(_X, [-1, diminput])
    # 3. Input layer => Hidden layer
    _H = tf.matmul(_X, _W['hidden']) + _b['hidden']
    # 4. Splite data to 'nsteps' chunks. An i-th chunck indicates i-th batch data
    _Hsplit = tf.split(_H, _nsteps,0 )
    # 5. Get LSTM's final output (_LSTM_O) and state (_LSTM_S)
    #    Both _LSTM_O and _LSTM_S consist of 'batchsize' elements
    #    Only _LSTM_O will be used to predict the output.
    with tf.variable_scope(_name) as scope:
        #scope.reuse_variables()
        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(dimhidden, forget_bias=1.0)
        _LSTM_O, _LSTM_S = tf.nn.static_rnn(lstm_cell, _Hsplit, dtype=tf.float32)
    # 6. Output
    _O = tf.matmul(_LSTM_O[-1], _W['out']) + _b['out']
    # Return!
    return {
        'X': _X, 'H': _H, 'Hsplit': _Hsplit,
        'LSTM_O': _LSTM_O, 'LSTM_S': _LSTM_S, 'O': _O
    }


print("Network ready")

learning_rate = 0.001
x      = tf.placeholder("float", [None, nsteps, diminput])
y      = tf.placeholder("float", [None, dimoutput])
myrnn  = _RNN(x, weights, biases, nsteps, 'basic')
pred   = myrnn['O']
cost   = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optm   = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Adam Optimizer
accr   = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,1), tf.argmax(y,1)), tf.float32))
init   = tf.global_variables_initializer()
print ("Network Ready!")

training_epochs = 5
batch_size      = 16
display_step    = 1
sess = tf.Session()
sess.run(init)
print ("Start optimization")
for epoch in range(training_epochs):
    avg_cost = 0.
    #total_batch = int(mnist.train.num_examples/batch_size)
    total_batch = 100
    # Loop over all batches
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape((batch_size, nsteps, diminput))
        # Fit training using batch data
        feeds = {x: batch_xs, y: batch_ys}
        sess.run(optm, feed_dict=feeds)
        # Compute average loss
        avg_cost += sess.run(cost, feed_dict=feeds)/total_batch
    # Display logs per epoch step
    if epoch % display_step == 0:
        print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
        feeds = {x: batch_xs, y: batch_ys}
        train_acc = sess.run(accr, feed_dict=feeds)
        print (" Training accuracy: %.3f" % (train_acc))
        testimgs = testimgs.reshape((ntest, nsteps, diminput))
        feeds = {x: testimgs, y: testlabels}
        test_acc = sess.run(accr, feed_dict=feeds)
        print (" Test accuracy: %.3f" % (test_acc))
print ("Optimization Finished.")

3.结果:

Network Ready!
2019-05-17 14:17:19.454400: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Start optimization
Epoch: 000/005 cost: 1.681037109
 Training accuracy: 0.625
2019-05-17 14:17:24.844400: W tensorflow/core/framework/allocator.cc:124] Allocation of 143360000 exceeds 10% of system memory.
 Test accuracy: 0.440
Epoch: 001/005 cost: 1.285484257
 Training accuracy: 0.750
2019-05-17 14:17:31.432400: W tensorflow/core/framework/allocator.cc:124] Allocation of 143360000 exceeds 10% of system memory.
 Test accuracy: 0.565
Epoch: 002/005 cost: 1.131057074
 Training accuracy: 0.625
2019-05-17 14:17:37.846400: W tensorflow/core/framework/allocator.cc:124] Allocation of 143360000 exceeds 10% of system memory.
 Test accuracy: 0.592
Epoch: 003/005 cost: 0.991629310
 Training accuracy: 0.688
2019-05-17 14:17:44.179400: W tensorflow/core/framework/allocator.cc:124] Allocation of 143360000 exceeds 10% of system memory.
 Test accuracy: 0.614
Epoch: 004/005 cost: 0.931213274
 Training accuracy: 0.812
2019-05-17 14:17:50.471400: W tensorflow/core/framework/allocator.cc:124] Allocation of 143360000 exceeds 10% of system memory.
 Test accuracy: 0.593
Optimization Finished.

发布了43 篇原创文章 · 获赞 77 · 访问量 32万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 终极编程指南 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览