1 重建损失
直接比较像素之间的差异,在超分领域通常L1损失函数比L2损失函数更清晰、收敛更快。
class ReconstructionLoss(nn.Module):
def __init__(self, type='l1'):
super(ReconstructionLoss, self).__init__()
if (type == 'l1'):
self.loss = nn.L1Loss()
elif (type == 'l2'):
self.loss = nn.MSELoss()
else:
raise SystemExit('Error: no such type of ReconstructionLoss!')
def forward(self, sr, hr):
return self.loss(sr, hr)
2 对抗损失
GAN是2014年兴起的无监督学习网络。GAN主要是生成模型和判别模型进行迭代优化。优化目标是:
<