pytorch搭建yolov3网络

57 篇文章 5 订阅 ¥39.90 ¥99.00
本文介绍了YOLOv3网络结构,包括Darknet-53主干网络和FPN金字塔结构,详细讲解了特征提取、预测解码及损失函数计算。通过实例解析了目标检测模型在PyTorch中的实现过程。
摘要由CSDN通过智能技术生成

yolov3的整体网络结构

主要包含了两个部分。左边的Darknet-53主干特征提取网络主要用于提取特征。右边是一个FPN金字塔结构。

主干特征提取网络(提取特征)

import math
from collections import OrderedDict
import torch.nn as nn

#---------------------------------------------------------------------#
#   残差结构
#   利用一个1x1卷积下降通道数,然后利用一个3x3卷积提取特征并且上升通道数
#   最后接上一个残差边
#---------------------------------------------------------------------#
class BasicBlock(nn.Module):
    def __init__(self, inplanes, planes):
        super(BasicBlock, self).__init__()
        self.conv1  = nn.Conv2d(inplanes, planes[0], kernel_size=1, stride=1, padding=0, bi
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值