python学习笔记之tensorboard

原创 2018年04月15日 22:20:44
# coding: utf-8

# In[2]:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# In[3]:

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)



# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义一个命名空间
with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784],name='x_input')
    y = tf.placeholder(tf.float32, [None, 10],name='y_input')
with tf.name_scope("layer"):
    with tf.name_scope('weights'):
        W = tf.Variable(tf.zeros([784, 10]))
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]))
    with tf.name_scope('wx_plus_b'):
        wx_plus_b=tf.matmul(x, W) + b
# 创建一个简单的神经网络
    with tf.name_scope('prediction'):
        prediction = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    # 二次代价函数
    loss = tf.reduce_mean(tf.square(y - prediction))
with tf.name_scope("train"):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope("correct_prediction"):
# 结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
    with tf.name_scope("accuracy"):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
    sess.run(init)
    writer=tf.summary.FileWriter('logs/',sess.graph)
    for epoch in range(1):
        for batch in range(n_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

# In[ ]:


我的tensorboard生成文件夹为:E:\Py3.6_Proje\Tensorflow\logs

打开cmd  

1:输入 e:    按enter

2:输入tensorboard --logdir=E:\Py3.6_Proje\Tensorflow\logs

3:将cmd生成的本地连接打开,复制到Google浏览器中,即可打开tensorboard模型

TensorFlow学习笔记之TensorBoard

TensorFlow自带的一个强大的可视化工具,在Win7 64位Anaconda安装Python 3.6.1采用pip install tensorflow-gpu==1.4.0(版本可变,如1.7...
  • u011501388
  • u011501388
  • 2018-04-03 16:16:18
  • 120

TensorFlow-6-TensorBoard 可视化学习

学习资料: https://www.tensorflow.org/get_started/summaries_and_tensorboard中文翻译: http://wiki.jikexueyua...
  • aliceyangxi1987
  • aliceyangxi1987
  • 2017-04-26 10:42:31
  • 7275

win7 python3.5 启动tensorboard

最近学习tensorflow,按照手册学习到fully_connected_feed.py。里面有个可视化的tensotboard,可以查看graph,loss,这个功能很有用。所以就想使用tenso...
  • JT31520
  • JT31520
  • 2017-05-12 16:41:26
  • 1849

学习笔记TF039:TensorBoard

首先向大家和《TensorFlow实战》的作者说句不好意思。我现在看的书是《TensorFlow实战》。但从TF024开始,我在学习笔记的参考资料里一直写的是《TensorFlow实践》,我自己粗心搞...
  • weixin_38776853
  • weixin_38776853
  • 2017-08-12 10:37:08
  • 534

Python学习笔记

  • 2010年02月23日 17:05
  • 596KB
  • 下载

Tensorflow深度学习笔记(七)-Tensorboard应用

tensorboard可以以图形的方式观察训练过程,直观的显示训练情况。下面采用之前的代码,再加上tensorboard相关代码。# coding: utf-8 import tensorflow a...
  • juyin2015
  • juyin2015
  • 2017-12-04 21:43:49
  • 134

【Python | TensorBoard】用 PCA 可视化 MNIST 手写数字识别数据集

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation...
  • u010099080
  • u010099080
  • 2016-12-10 19:23:02
  • 4673

tensorboard可视化操作过程及测试代码

在anaconda的spyder下生成logs文件后在chrome浏览器中打开tensorboard,可以看到自己搭建的框架。 总结一下过程与遇到的问题: 1,代码中python3.6原来函数改变...
  • qq_35608277
  • qq_35608277
  • 2017-12-25 22:43:34
  • 86

Tensorboard可视化好帮手1

代码来自莫烦的优酷播单: 莫凡 tensorflow 神经网络 教程:TensorFlow 14 Tensorboard可视化好帮手...
  • zhs233
  • zhs233
  • 2017-03-19 14:19:56
  • 1742

tensorflow学习笔记十五:tensorflow官方文档学习 TensorBoard: Graph Visualization

tensorflow计算图是强大而复杂的。图形可视化可以帮助您理解和调试它们。下面是一个可视化工作的例子。 Visualization of a TensorFlow graph. 看看自...
  • xiaopihaierletian
  • xiaopihaierletian
  • 2017-03-19 15:55:27
  • 1737
收藏助手
不良信息举报
您举报文章:python学习笔记之tensorboard
举报原因:
原因补充:

(最多只允许输入30个字)