这篇论文的核心思想是通过在2DCNN中位移temporal维度上的channels,来实现视频中时间维度上的信息交互。作者分析了一般的卷积操作,其主要分为两个部分,1是位移,2是对应位置的权值相乘再相加。其中位移不消耗计算资源,所以,作者想到能否可以在temporal维度上位移,达到不同帧的特征信息交融来增强模型对视频信息的理解。位移过程如下图所示:

上图中,不同颜色代表不同帧的特征,其大小为chw*。图b中,在T方向上,将第一列向下位移1位,第二列向上位移1位,空出的部分补0填充。
**这样的位移方法也有它的弊端。**其一,大步长的位移会导致原始特征中补充的0太多,导致丢失重要信息。2、给硬件造成了负担,增加了内存的占用。3、降低了空间维度的建模能力,由于原有的空间特征被破坏,所以可能会导致变差。
为了去研究其优势和劣势,作者测量了TSM模型和2Dbaseline在不同硬件设备上的推理延迟。使用ResNet-50主干和8帧输入测量模型,使用无移位(2D基线)、部分移位(1/8、1/4、1/2)和全移位(移动所有通道)进行比较(下面曲线图a)。1000 次运行后(之前有200次的热身),发现位移操作相比baseline的确有延迟影响。移动所有通道,延迟开销将占到CPU推理时间的13.7%,移动1/8,延迟开销限制在3%.
本文介绍了TSM(Temporal Shift Module)技术,该技术通过在2DCNN中位移时间维度的channels来增强视频信息理解。文章讨论了位移操作的优缺点,包括可能的信息丢失和硬件负担,并通过实验对比了不同位移程度对推理延迟的影响。TSM在Kinetics等数据集上表现出色,与P-3D类似,但在计算成本上与2DCNN相当。此外,还提出了一种在线TSM模型,减少了内存占用。实验结果显示,TSM在多种数据集上显著提升了准确率,尤其是在something-somethingv2上提高了31.3%。
最低0.47元/天 解锁文章
504

被折叠的 条评论
为什么被折叠?



