神经网络
文章平均质量分 84
lxznjw
这个作者很懒,什么都没留下…
展开
-
神经网络小记-混淆矩阵
混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。:模型错误地将负类别样本分类为正类别的数量(误报)。:模型错误地将正类别样本分类为负类别的数量(漏报)。:被分类为正类别的样本中,真正为正类别的比例,即。:模型正确地将正类别样本分类为正类别的数量。:正类别样本被正确分类为正类别的比例,即。原创 2023-09-16 20:49:59 · 867 阅读 · 0 评论 -
神经网络随记-参数矩阵、剪枝、模型压缩、大小匹配、、
总的来说,现在的大模型是深度学习的一种进化,它们具有更强大的学习和表示能力,但同时也需要更多的数据和计算资源来训练。大模型在某些特定领域表现出色,但对于一般的任务,传统的深度学习模型仍然是一种有效和实用的方法。通过将模型参数从浮点数转换为整数(float转int)可以实现模型的优化,主要优点包括减少模型的存储需求和加快计算速度,从而提高模型在嵌入式设备或资源受限环境中的执行效率。这些权重矩阵和偏置向量的参数是在神经网络的训练过程中学习得到的,通过最小化损失函数来优化模型的预测结果。原创 2023-07-24 07:37:37 · 2598 阅读 · 0 评论 -
神经网络小记-优化器
优化器是深度学习中用于优化神经网络模型的一类算法,其主要作用是根据模型的损失函数来调整模型的参数,使得模型能够更好地拟合训练数据,提高模型的性能和泛化能力。优化器在训练过程中通过不断更新模型的参数,使模型逐步接近最优解。具体来说,优化器的作用包括:参数更新:优化器根据损失函数计算出的梯度信息来更新模型的参数,使得模型能够朝着损失函数下降的方向调整,从而最小化损失函数。收敛加速:优化器通过引入动量等技术,可以加速模型的收敛过程,从而更快地找到较好的参数组合。原创 2023-07-23 20:08:47 · 2678 阅读 · 0 评论 -
神经网络小记-过拟合与欠拟合
欠拟合(Underfitting)是机器学习和深度学习中另一个常见的问题,指模型在训练数据上表现不佳,也无法在新数据上取得很好的预测结果,即模型未能充分拟合训练数据的特征,导致在训练集和测试集上都表现较差。过拟合(Overfitting)是机器学习和深度学习中常见的问题,指模型在训练数据上表现得非常好,但在新数据上表现较差,即模型过度拟合了训练数据的特征,导致泛化能力不足。集成学习:通过集成多个不同的模型,形成一个更强大的模型,可以提高模型的泛化能力,从而减少欠拟合问题。原创 2023-07-23 16:41:36 · 1013 阅读 · 0 评论 -
神经网络小记-attation
在神经网络中,注意力机制通过计算输入中不同部分的权重,将关注点集中在对任务具有重要性的信息上。它可以用来选择性地关注输入中的某些部分,从而提高模型的表达能力和性能。通过分配权重,注意力机制可以根据输入的不同部分的相关性和重要性来调整模型的处理方式。在自注意力机制中,权重是通过计算输入中每个位置与其他位置的相关性得分来得到的,然后将相关性得分进行归一化处理,得到每个位置的权重。这样,模型可以根据不同位置之间的相对重要性来聚焦于不同的信息。原创 2023-07-09 18:30:17 · 198 阅读 · 0 评论 -
神经网络小记-损失函数与激活函数
这只是一部分常见的损失函数和它们的应用场景,实际上还有许多其他的损失函数可根据任务需求进行选择。选择适合的损失函数对于模型的训练和性能至关重要,需要根据具体的问题和模型进行调整。在深度学习中,激活函数被用于引入非线性性质,增强模型的表示能力。原创 2023-07-09 18:28:15 · 474 阅读 · 0 评论 -
神经网络小记-主要组成简介
它使用梯度下降算法,通过计算损失函数对权重的梯度,然后根据梯度更新权重,使得损失函数最小化。前向传播(Forward Propagation):神经网络通过前向传播算法将输入数据从输入层传递到输出层,过程中每个神经元依次计算输出,并将输出传递给下一层。批量归一化(Batch Normalization):批量归一化是一种常用的正则化技术,用于加速神经网络的训练过程并提高模型的泛化能力。神经网络是一种模拟人脑神经元工作方式的计算模型,它由许多不同的部件组成,每个部件都在网络中扮演着不同的角色。原创 2023-07-06 10:03:08 · 920 阅读 · 0 评论 -
神经网络小记-cnn
卷积操作是卷积神经网络(CNN)中的核心操作之一,用于提取输入数据的特征。下面是CNN中的卷积操作的详细说明。假设我们有一个输入数据(图像)X,它是一个三维张量,具有形状(通道数,高度,宽度)。我们还有一组卷积核(滤波器)W,它也是一个三维张量,具有形状(输出通道数,输入通道数,卷积核高度,卷积核宽度)。卷积操作将输入数据和卷积核进行卷积运算,得到输出特征图。原创 2023-07-01 21:44:19 · 158 阅读 · 0 评论 -
神经网络小记-rnn
循环神经网络(Recurrent Neural Network,RNN)是一种常用于处理序列数据的神经网络结构。它具有反馈连接,允许信息在网络中传递并影响后续的输出。RNN的基本结构包括输入层、隐藏层和输出层。隐藏层的输出通过时间上的循环连接反馈到自身,以便利用前一时刻的信息来影响当前时刻的输出。以下是RNN的公式表示:xthtfWxhxtWhhht−1bh其中,Wxh是输入到隐藏层的权重矩阵,Whh是隐藏层到隐藏层的权重矩阵,bh。原创 2023-07-01 21:43:57 · 127 阅读 · 0 评论 -
神经网络小记-梯度消失与梯度爆炸
相反,当梯度爆炸时,梯度值在反向传播过程中逐渐增大,导致底层网络参数更新过大,造成不稳定的训练。在常见的饱和激活函数中,如Sigmoid函数和Tanh函数,当输入接近于正无穷大或负无穷小时,函数的输出会饱和到接近于1或-1,导数接近于零。这意味着当网络的输出位于饱和区域时,梯度的变化几乎为零,无法有效地传递和更新梯度,导致梯度消失的问题。这会导致网络无法进行正常的前向传播和反向传播。不稳定的更新:梯度爆炸使得参数的更新量非常大,可能会导致模型在每次更新时产生剧烈的波动,使网络参数无法稳定地收敛到最优解。原创 2023-06-27 16:57:45 · 1035 阅读 · 0 评论 -
神经网络小记-感知机
然而,由于感知机的激活函数通常采用阶跃函数或符号函数等分段线性函数,这使得感知机的决策边界只能是线性的,即只能是直线、超平面或超平面的组合。为了解决非线性可分问题,需要使用更加复杂的神经网络模型,如多层感知机(MLP)或深度神经网络(DNN),其中引入了非线性的激活函数(如ReLU、sigmoid等)和多层的连接,使得模型能够学习到更加复杂的决策边界,从而能够处理非线性的数据集。感知机之所以只能解决线性可分问题,是因为它的决策边界是线性的,无法对非线性的数据进行准确分类。原创 2023-06-27 10:14:07 · 98 阅读 · 0 评论