其他
文章平均质量分 59
lxznjw
这个作者很懒,什么都没留下…
展开
-
电力兆瓦-小记
例如,如果您知道某个设备的容量是 100 千瓦(kW),那么它等于 0.1 兆瓦(MW),因为 1 MW 等于 1,000 kW。:当一座发电厂、电力站或能源设施的发电机、太阳能电池板或风力涡轮机等设备的总发电能力达到 44 MW 时,这意味着在满负荷运行时,该设施可以以每小时产生 44 兆瓦时(MWh)的电力。这个数字表示电力产能的潜力。:电力需求通常以 MW 表示,城市、地区或国家的电力需求是根据不同时段、季节和用途来计算的。:电力通常以瓦特(W)为基本单位,其中 1 兆瓦(MW)等于 1 百万瓦特。原创 2023-11-01 14:25:33 · 22468 阅读 · 0 评论 -
版本版本还是版本
Python 2与Python 3之间的过渡期一度让人痛苦,但它也向我们证明了版本迁移是必要的。你可能会看到版本1.2.3、1.2.3.1、1.2.3.2,然后你还需要确定哪个版本与你的项目兼容,否则你就会陷入库的版本地狱。版本问题是必须克服的挑战,它们教会了我们耐心,让我们更好地理解了软件开发的复杂性。所以,继续努力,不断学习,最终你会掌握如何处理版本问题,成为更好的程序员。最烦人的是,当你一遇到问题,你可能会陷入无尽的谷歌搜索、Stack Overflow浏览和试错的循环,希望找到解决方案。原创 2023-10-11 16:34:24 · 173 阅读 · 0 评论 -
杂记-缺失值插值方式
这个表格提供了对不同插值方法的概述。具体使用哪种方法取决于数据的性质和分布,以及对结果精度的要求。需要根据具体情况选择最合适的插值方法。选择哪种插值方式通常取决于数据的性质以及缺失值的分布。在实际应用中,通常会先观察数据,了解数据的分布和特点,然后选择合适的插值方法来填充缺失值。此外,还可以尝试不同的方法,比较它们的效果,选择最适合特定数据集的方法。原创 2023-10-10 15:06:00 · 378 阅读 · 0 评论 -
常用的相关性分析方法
肯德尔相关系数也是一种非参数的相关性分析方法,用于测量两个变量之间的排序关系。它基于排列对的数量,可以度量变量的等级之间的一致性程度。这些相关性分析方法在统计学和数据分析中都有广泛的应用,可以帮助研究者理解变量之间的关系,从而做出推断、预测和决策。它类似于皮尔逊相关系数,但适用于包含一个二元变量的情况,其中0和1表示两种不同的状态。它包括散点图、回归分析和相关系数等技术,可用于可视化和量化两个变量之间的线性或非线性关系。卡方检验可用于确定观察到的频数是否与预期频数有显著差异,从而评估两个变量之间的相关性。原创 2023-10-10 11:28:21 · 3326 阅读 · 0 评论 -
计算机基础小记-网络请求错误码
网络错误代码通常是通过 HTTP 状态码来表示的,HTTP(Hypertext Transfer Protocol)是用于传输数据的应用层协议,它定义了一系列状态码,用于表示客户端向服务器发起请求时的处理结果。这些状态码是 HTTP 协议中定义的一部分,不同的状态码代表了不同的请求处理结果。在开发过程中,了解这些状态码能够帮助你更好地理解网络请求和响应的情况,以及如何适当地处理它们。原创 2023-08-25 10:55:48 · 260 阅读 · 0 评论 -
杂记-tfidf
这个示例中,文档集合中的每个句子被视为一个文档,TfidfVectorizer将文档集合转换为一个矩阵,每一行代表一个文档的TF-IDF特征向量。特征向量的维度等于词汇表中不重复词的个数,特征向量的每个元素表示对应词在文档中的TF-IDF值。IDF(逆文档频率)指的是一个词在文档集合中的普遍重要性,它衡量了一个词对于整个文档集合的重要性。在TF-IDF中,一个词在某个文档中的重要性由TF和IDF的乘积来表示。TF(词频)指的是一个词在文档中出现的频率,它衡量了一个词在文档中的重要性。原创 2023-06-29 09:16:54 · 41 阅读 · 0 评论 -
杂记-分类与回归
在智慧农业中,分类任务可用于作物品种识别、土壤类型分类等;回归任务可用于作物产量预测、土壤肥力评估等。这些任务的选择取决于所需的预测结果类型和目标变量的性质。分类和回归是机器学习中两种不同的任务,其主要区别在于目标变量的性质和预测结果的类型。原创 2023-06-28 08:44:08 · 148 阅读 · 1 评论