机器学习
文章平均质量分 90
lxznjw
这个作者很懒,什么都没留下…
展开
-
机器学习小记-序
机器学习是人工智能的一个重要分支,根据学习任务的不同,可以将机器学习分为以下几类: 监督学习(Supervised Learning): 应用场景:监督学习适用于已标记数据集的任务,其中每个样本都有相应的标签或输出。常见的应用场景包括分类和回归问题。例如,垃圾邮件分类、图像识别、房价预测等。 无监督学习(Unsupervised Learning): 应用场景:无监督学习用于未标记数据集的任务,目标是从数据中发现模式、聚类和降维。应用场景包括聚类、异常检测、特征学习等。例如,用户分群、图像分割原创 2023-07-20 21:00:23 · 394 阅读 · 0 评论 -
机器学习小记-朴素贝叶斯
朴素贝叶斯(Naive Bayes)是一种基于概率统计和特征条件独立性假设的分类算法。它使用贝叶斯定理来预测样本的类别,并通过计算后验概率来进行分类决策。朴素贝叶斯算法常用于文本分类、垃圾邮件过滤、情感分析等任务。以下是朴素贝叶斯算法的详细步骤:数据准备:首先,收集和准备用于训练的数据集。数据集由一组已知类别的样本组成,每个样本都有一组特征和对应的类别标签。特征选择:根据问题的需求,选择适当的特征作为分类的依据。朴素贝叶斯算法假设特征之间是条件独立的,这意味着每个特征对于分类的贡献是相互独立的。原创 2023-06-29 22:51:13 · 127 阅读 · 0 评论 -
机器学习小记-决策树
决策树是一种常见的机器学习算法,用于分类和回归问题。它基于一系列的决策规则来对数据进行划分,最终形成一个树状结构。每个内部节点代表一个特征,每个分支代表该特征的一个取值,而每个叶节点代表一个类别(对于分类问题)或一个数值(对于回归问题)。决策树的构建过程包括以下步骤:特征选择:根据某种准则选择最佳的特征作为当前节点的划分依据。常见的特征选择准则包括信息增益、信息增益比、基尼系数等。节点划分:根据选择的特征,将数据集划分为不同的子集。每个子集对应于一个分支,构成当前节点的子节点。原创 2023-06-29 17:27:41 · 304 阅读 · 0 评论 -
机器学习小记-svm
支持向量机(Support Vector Machine,简称SVM)是一种常用的监督学习算法,用于分类和回归问题。SVM的主要目标是找到一个最优的超平面来划分不同类别的样本。下面是SVM的基本过程和步骤:数据准备:收集和准备用于训练和测试的数据集。每个样本应该包含一组特征和对应的类别标签。特征预处理:对特征进行预处理,例如特征缩放、归一化或标准化,以确保不同特征的尺度一致。特征选择:根据具体问题和数据集的特点,选择最具代表性和重要性的特征,以降低维度和减少冗余。原创 2023-06-29 12:04:18 · 468 阅读 · 0 评论 -
机器学习小记-pca
计算数据的均值向量:对每个特征列求平均值,得到一个均值向量。数据标准化:将每个特征列减去对应的均值,得到零均值的数据。计算协方差矩阵:将标准化后的数据进行协方差矩阵的计算。计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。选择主成分:根据特征值的大小,选择前 k 个特征向量作为主成分,其中 k 是期望的降维维度。数据投影:将标准化后的数据投影到选定的主成分上,得到降维后的数据。运行以上代码,将得到 PCA 算法进行降维后的结果。可以看到,得到了降维后的结果。原创 2023-06-27 22:06:31 · 139 阅读 · 0 评论