杂记-分类与回归

分类和回归是机器学习中两种不同的任务,其主要区别在于目标变量的性质和预测结果的类型。

  1. 目标变量性质:
  • 分类任务的目标变量是离散的,代表不同的类别或标签。例如,预测一张图像中的动物是猫还是狗,输出结果只能是"猫"或"狗",不会有其他的取值。
  • 回归任务的目标变量是连续的,代表数量、度量或某种度量尺度上的数值。例如,预测一座房屋的价格,输出结果是一个具体的数值,可以是任意实数。
  1. 预测结果类型:
  • 分类任务的预测结果是样本属于哪个类别的概率或决策。例如,对于图像分类任务,模型可能输出一张图像属于猫的概率为0.8,属于狗的概率为0.2。或者模型直接输出"猫"或"狗"的决策结果。
  • 回归任务的预测结果是一个连续的数值,可以是实数或整数。例如,对于房屋价格预测任务,模型可能输出一座房屋的预测价格为100,000美元。
    在分类和回归任务中,常用的代价函数(也称为损失函数)和评估函数有一些不同。

分类与回归的代价函数与评估函数

对于分类任务,常见的代价函数和评估函数包括:

  1. 代价函数:

    • 交叉熵损失函数(Cross-Entropy Loss):用于多分类问题,衡量预测类别与真实类别之间的差异。
    • 对数损失函数(Log Loss):用于二分类问题,衡量预测概率与真实标签之间的差异。
    • Hinge损失函数(Hinge Loss):用于支持向量机(SVM)等分类器,衡量预测结果与真实标签之间的差异。
    • 其他常见的代价函数还包括均方误差(Mean Squared Error)、平均绝对误差(Mean Absolute Error)等。
  2. 评估函数:

    • 准确率(Accuracy):计算分类模型预测结果中正确分类的样本比例。
    • 精确率(Precision):衡量正例预测的准确性,即预测为正例的样本中真正为正例的比例。
    • 召回率(Recall):衡量正例被预测出的能力,即真正为正例的样本中被预测为正例的比例。
    • F1分数(F1 Score):综合考虑精确率和召回率,用于平衡二者之间的关系。
    • ROC曲线和AUC值(Receiver Operating Characteristic curve and Area Under Curve):用于评估二分类模型在不同阈值下的性能。

对于回归任务,常见的代价函数和评估函数包括:

  1. 代价函数:

    • 均方误差(Mean Squared Error):衡量预测值与真实值之间的差异。
    • 平均绝对误差(Mean Absolute Error):衡量预测值与真实值之间的绝对差异。
    • Huber损失函数:综合了均方误差和平均绝对误差,对离群点具有一定的鲁棒性。
  2. 评估函数:

    • R平方(R-Squared):衡量模型对目标变量的解释能力,取值范围为0到1,越接近1表示模型拟合效果越好。

需要根据具体的任务和算法选择合适的代价函数和评估函数,以便衡量模型的性能和进行模型的训练和评估。

总结:

  • 分类任务用于预测样本属于不同类别的概率或决策,目标变量是离散的。
  • 回归任务用于预测连续的数值,目标变量是连续的。

在智慧农业中,分类任务可用于作物品种识别、土壤类型分类等;回归任务可用于作物产量预测、土壤肥力评估等。这些任务的选择取决于所需的预测结果类型和目标变量的性质。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值