nlp
文章平均质量分 76
lxznjw
这个作者很懒,什么都没留下…
展开
-
nlp小记-分词
基于机器学习的分词:基于机器学习的分词方法使用机器学习算法,如支持向量机(Support Vector Machines,SVM)、最大熵模型(Maximum Entropy Model,MaxEnt)和神经网络等,通过训练模型来进行分词。基于机器学习的分词:基于机器学习的分词方法使用机器学习算法,如支持向量机(Support Vector Machines,SVM)、最大熵模型(Maximum Entropy Model,MaxEnt)和神经网络等,通过训练模型来进行分词。原创 2023-07-15 21:27:55 · 137 阅读 · 0 评论 -
nlp小记-词向量发展史
词向量的发展历史可以追溯到上世纪50年代开始的分布式语义学(Distributional Semantics)研究,但直到近年来,随着深度学习的兴起,词向量才得到了广泛的应用和研究。综上所述,词向量的发展历史经历了从传统统计模型到基于神经网络的模型的演进,从基于共现统计到基于上下文的表示学习,以及从单词级别到句子和文档级别的表示学习。统计语言模型:早期的词向量研究主要基于统计语言模型,其中最著名的是基于N元语法的N-gram模型。这些模型通过统计词的共现频率来表示词之间的语义关系。原创 2023-06-28 10:19:55 · 353 阅读 · 1 评论 -
nlp小记-Word2vce
Word2Vec是一种基于神经网络的词向量模型,旨在学习将单词表示为连续向量。它通过分析大规模文本语料中单词的上下文关系来生成词向量。Word2Vec模型包括两种主要的架构:连续词袋模型(Continuous Bag-of-Words,CBOW)和跳字模型(Skip-gram)。Word2Vec模型通过学习单词的分布式表示,提供了一种有效的方式来处理自然语言的语义关系和语境信息。这使得它在各种自然语言处理任务中广泛应用,如文本分类、命名实体识别、情感分析等。原创 2023-06-28 10:19:25 · 361 阅读 · 1 评论