互信息估计器

互信息估计器

信息量: X= x 的信息量

熵: 代表信息量总和,是信息量的期望值,不确定性的度量。所以熵越大随机变量的取值范围越难确定,系统越不稳定。

交叉熵: P(x) 是目标分布,p,q的交叉熵可看成,使用分布q(x)表示p(x)的困难程度。
在这里插入图片描述

条件熵: H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。
在这里插入图片描述

相对熵(KL散度): 同一个随机变量的两个不同分布的距离。p(x),q(x) X的两个概率分布。实际应用中,p(x)是目标的真实分布,q(x)是预测得来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值