deepseek本地部署和网页版本区别分析_deepseek本地部署教程来了

春节期间最火爆的新闻是DeepSeek,没有之一,这则消息足以震动全球。它是一款国产的开源大模型,APP登顶苹果中国区和美国区应用商店免费下载排行榜。其实早在去年12月份就发布了v3模型,但当时并不火,直到今年1月份发布了对标OpenAI-o1的推理模型r1,短短几天时间火爆全球。由于免费开源,且训练成本大幅下降的情况下达到差不多的效果,这在AI行业引发的广泛的关注和讨论,市场对以英伟达为首的「大力出奇迹」的训练方式产生了质疑,认为通过对模型的优化可以减少对高端芯片的需求,英伟达股价也因此暴跌。

图片

一夜之间,微软、英伟达、亚马逊等全部接入DeepSeek模型。前两天,华为联合硅基流动首发了基于华为云昇腾云服务的DeepSeek-V3、DeepSeek-R1。硅基流动(SiliconCloud)是硅基流动公司推出的大模型云服务平台,目标是通过优化大模型,帮助用户实现Token自由,这是个收费产品,但是可以在线体验。

春节期间很多人已经体验了DeepSeek,手机端直接在应用商店下载使用,或者直接在网页体验:https://www.deepseek.com。但是也有一些深度用户,想在电脑端部署,离线使用。今天介绍一下如何在电脑上部署,为了方便操作可以首先安装一个名为“Ollama”的软件,它是一个开源框架,专门为本地电脑上部署和运行大模型而生的。

deepseek本地部署和网页版本区别:

DeepSeek的本地部署和网页版在多个方面存在显著的区别,以下是对两者的详细对比分析:

  1. 数据隐私与安全

    • 本地部署:所有用户数据仅在本地处理,无第三方接触风险,满足金融/医疗等敏感行业的监管要求。
    • 网页版:输入内容需通过服务商服务器,存在日志留存可能,依赖服务商信任,需接受隐私政策条款。
  2. 功能与灵活性

    • 本地部署:支持模型微调,可定制行业专属模型;可集成到私有系统如OA、CRM等;支持量化/剪枝优化,降低资源消耗。
    • 网页版:功能固定,无法修改模型参数;仅限官方提供的交互界面;受限于服务商API调用频次/响应速度。
  3. 成本投入

    • 本地部署:前期成本高,包括硬件采购、电费支出等,但长期成本低,一次投入后可无限次使用。
    • 网页版:短期成本低,有免费版或按需付费选项;但长期成本不可控,大规模使用时费用可能指数级增长。
  4. 技术门槛与操作难度

    • 本地部署:需要一定技术背景,涉及下载、安装、配置等多个步骤。
    • 网页版:开箱即用,使用简单,无需技术背景,通过浏览器即可访问。
  5. 应用场景与适用性

    • 本地部署:适用于处理敏感数据、需要7×24小时高频调用、企业私有化知识库构建等场景。
    • 网页版:适用于个人临时性需求、算力资源有限的开发者测试、快速验证模型基础能力等场景。

综上所述,DeepSeek的本地部署和网页版各有优劣,选择哪种方式主要取决于用户的具体需求、资源投入和技术实力。如果用户注重数据隐私和定制化需求,且具备一定的技术实力和硬件条件,可以选择本地部署;如果用户追求便捷性和低成本,且对数据隐私和定制化需求不高,可以选择网页版。

deepseek本地部署步骤:

1.在Ollama的官网包含Ollama程序下载以及DeepSeek模型下载。官网地址:https://ollama.com

图片

图片

2.首先以管理员身份运行Ollama程序进行安装,然后使用命令进行部署DeepSeek模型。

图片

DeepSeek模型有多个版本:1.5b、7b、8b、14b、32b、70b 671b,版本越高对GPU要求越高。每一个版本都对应一个安装命令,复制下来。然后以管理员身份运行CMD命令,输入上述命令。例如:ollama run deepseek-r1:1.5b,则自动在线部署安装。

(备注:卸载则把命令中的run改成rm,如果想了解更多命令,则直接输入ollama查看)

图片

图片

部署完成后,我们可以使用直接在命令窗口输入想问的问题。

图片

图片

如果你觉得没有UI,使用起来不方便的话,也可以再安装一个浏览器插件。这里推荐一个pageassist插件(含Chrome和Firefox),插件的安装方法这里就不详细介绍了。

图片

图片

本地部署和在线使用各有利弊,本地对GPU配置要求较高,但运行稳定,不受网速影响。有需要的小伙伴可以体验一下~

所需软件下载链接:https://pan.quark.cn/s/3947ceccb558

### DeepSeek 本地部署网页化 #### 准备工作 为了成功完成DeepSeek本地部署及其网页化的操作,需先准备好必要的环境工具。确保计算机已安装Python以及虚拟环境管理工具如`venv`或`conda`[^1]。 #### 安装Ollama 按照官方指南,在目标机器上安装Ollama软件包。这一步骤对于后续加载特定版本DeepSeek模型至关重要。具体命令如下所示: ```bash pip install ollama ``` 此过程会自动处理所有依赖项,使系统准备就绪以接收并运行DeepSeek模型实例[^2]。 #### 下载DeepSeek模型 获取最新版的DeepSeek模型文件,并将其放置于指定目录下。通常情况下,可以从官方网站或其他可信渠道获得这些资源。注意验证所下载文件的完整性与合法性[^3]。 #### 配置Web服务器 为了让DeepSeek能够通过浏览器访问,需要配置一个简单的HTTP服务来托管API接口。可以利用Flask框架快速搭建这样的服务平台。下面是一个基本的应用程序结构示例: ```python from flask import Flask, request, jsonify import deepseek_api # 假设这是用于调用DeepSeek功能的模块 app = Flask(__name__) @app.route('/deepseek', methods=['POST']) def handle_request(): data = request.json response = deepseek_api.process(data) return jsonify(response) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` 这段代码创建了一个监听端口8080的服务,它接受JSON格式的数据作为输入参数,并返回由DeepSeek处理后的结果给前端页面请求者。 #### 构建前端界面 最后一步是设计直观易用的HTML/CSS/JavaScript组合而成的人机交互界面对话框。这里推荐采用流行的前端库比如React.js简化开发流程。同时也要考虑到跨平台兼容性用户体验优化方面的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值