deepseek本地部署+web图形化页面配置+对比其他ai模型

公众号:泷羽Sec-尘宇安全

前言

最近deepseek非常火,训练成本低,其预训练费用仅为OpenAI GPT-4o模型的不到十分之一,但是效果堪比OpenAI,使用深度思考,回答的问题很不错,啥都敢说

可惜惨遭ddos,导致官网注册用户都注册不了了,无法正常提供服务,不过我们可以进行本地部署,离线就可以使用,无需联网,即可本地使用。当然服务器多的,也可以在服务器上部署,这样大家都能用了。

如果嫌下载慢可以后台发送:deepseek 获取网盘下载地址

安装ollama

在官网点击Download下载对应系统的安装程序。

https://ollama.com/

如果C盘内存足够,可以直接安装

  • 默认是安装到C盘的,如果你想安装到指定目录可以在安装程序目录上方输入CMD打开命令行窗口

在弹出的命令行窗口内输入:

setx OLLAMA_MODELS F:\chatgpt_all\ollama

来修改环境变量OLLAMA_MODELS,将模型下载位置修改到F:\chatgpt_all\ollama目录,你也可以改为其他容量比较大的磁盘下的目录

  • 设置ollama服务启动配置:在弹出的命令行窗口内输入执行
setx OLLAMA_HOST 0.0.0.0
setx OLLAMA_ORIGINS *

之后默认一步一步安装即可

安装deepseek模型

之后来到ollama选择deepseek模型,第一就是

选择模型大小。正常情况下根据自己的显卡显存选择,比如显存8G就选择8B的模型

输入复制下来的命令

ollama run deepseek-r1:8b

等待一段时间,安装成功

其他命令

  • 查看当前安装的模型: ollama list
  • 安装其他模型:在 https://ollama.com/library 上查询模型名称,执行ollama run xx:xx进行安装,如安装gemma2:9b模型,ollama run gemma2:9b
  • 查询运行的模型:ollama ps

查看一下安装的模型,之前因为线下的ctf比赛,就使用过离线的ai了,之前对比过觉得阿里云的qwen比其他的都要好用,等下将他和deepseek-r1对比一下

集成ChatGPT-Next-Web界面

安装

下载之后默认安装即可

https://github.com/ChatGPTNextWeb/NextChat/releases/

配置

打开ChatGPT-Next-Web界面 设置,进行基础配置:

  • 配置服务商:选择Open Ai
  • 自定义模型名:选择 deepseek-r1:8b
  • 模型:选择 deepseek-r1:8b
  • 接口地址:http://127.0.0.1:11434

关闭配置页面。所有工作已经完成, 可以试试在ChatGPT-Next-Web 里点击 新的聊天,来与大模型进行聊天了。

问题解决:

  • ChatGPT-Next-Web无法聊天,提示failed to fetch: 可能是你没有执行setx OLLAMA_ORIGINS *,或者是你搞乱了步骤,先安装了ollama,然后在执行环境变量设置后没有重启ollama.
    • 解决方法-查看环境变量是否正常:执行set OLLAMA_ORIGINS 检查输出是否是OLLAMA_ORIGINS=*
    • 解决方法-重启ollama,且重新打开新命令行窗口运行ollma run。
  • ChatGPT-Next-Web无法聊天,提示gpt3.5tubo xxxx: 选择模型有误,在聊天窗口点击模型切换按钮,选择qwen2:7b模型
  • 模型运行缓慢:检查显卡是否正常
    • 显卡检查:执行nvidia-smi查看显存占用和显卡使用情况

对比qwen:7b和deepseek-r1:8b

由于是IT行业,所以就给一段漏洞代码让他们彼此分析一下,其实并不严谨,只供参考

给出下面的代码

分析下面代码的漏洞,给出利用步骤

<?php
//Multilingual. Not implemented yet.
//setcookie("lang","en.lang.php");
if (isset($_COOKIE['lang']))
{
	include("lang/".$_COOKIE['lang']); 
}
// Not imple
### DeepSeek 本地部署方法及网页集成教程 #### 一、准备工作 确保计算机满足最低硬件需求,并已安装必要的软件包,如 Python 和 Git。对于 Windows 用户,在 Windows 10 环境下完成 DeepSeek 部署前需确认系统更新至最新版本[^2]。 #### 二、获取 DeepSeek 模型 前往 Ollama 官方网站 (https://ollama.ai/) 查找 deepseek-r1 版本的模型文件。考虑到网络状况和个人偏好,可以选择从 huggingface.co 或者经过修改后的镜像站点 hf-mirror.com 下载所需资源;后者可能提供更快的速度和服务稳定性[^3]。 #### 三、环境搭建与依赖项安装 按照官方文档指示设置虚拟环境并激活它。接着利用 pip 工具来安装项目所需的 Python 库和其他依赖组件。这一步骤通常涉及执行如下命令: ```bash pip install -r requirements.txt ``` 此操作会依据 `requirements.txt` 文件自动拉取所有必需库及其特定版本号[^4]。 #### 四、使用 Open Web UI 进行可视化交互(可选) 为了简化用户界面设计过程并增强用户体验,推荐采用 Open Web UI 来构建图形化前端页面。该工具可通过 GitHub 上开源仓库获得支持材料和技术指导。具体来说,可以通过 Pip 实现快速安装: ```bash pip install openwebui ``` 之后依照说明文档中的指引启动服务端程序即可实现基本功能展示[^1]。 #### 五、运行测试验证成功与否 最后一步是对整个流程做全面检验,包括但不限于检查 API 接口响应情况、UI 展示效果等方面的表现。如果一切正常,则表明已经顺利完成了一次完整的 DeepSeek 本地部署工作。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值