【MATLAB】使用Classification Learner工具箱训练和预测数据

本文介绍了如何使用MATLAB的Classification Learner工具箱进行数据训练和预测。内容包括导入数据、选择特征、设定验证方式、训练模型以及模型评估。特别提到,Quadratic SVM和Fine Gaussian SVM算法在实验中表现出高准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日对matlab内置的classification Learner 工具箱有所接触,现在整理一下关于使用该工具箱训练模型和预测数据的相关操作。

一、原始数据

    其中列向量为样本,行向量内为每个样本的6个特征,最后一列为样本的响应变量(即为样本的实际类别)。

二、导入数据

    1. 首先我们在MATLAB自带的APP栏中打开Classification Learner:

       点开之后其交互界面如下:

       Matlab自带的Classification Learner工具箱具备多种可供用户使用的分类算法,如决策树、支持向量机、K-最近邻域等等。此外,此工具箱还具备数据的特征选择、方案验证、训练模型、检验训练结果等功能,有着良好的人机交互性。

评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值