近日对matlab内置的classification Learner 工具箱有所接触,现在整理一下关于使用该工具箱训练模型和预测数据的相关操作。
一、原始数据
其中列向量为样本,行向量内为每个样本的6个特征,最后一列为样本的响应变量(即为样本的实际类别)。
二、导入数据
1. 首先我们在MATLAB自带的APP栏中打开Classification Learner:
点开之后其交互界面如下:
Matlab自带的Classification Learner工具箱具备多种可供用户使用的分类算法,如决策树、支持向量机、K-最近邻域等等。此外,此工具箱还具备数据的特征选择、方案验证、训练模型、检验训练结果等功能,有着良好的人机交互性。