MATLAB工具箱——Classification Learner使用

我用的是MATLAB2018b,经过简单摸索后现分享如下:

Classification  Learner工具箱可以训练很多模型包括:decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classification 等等

官方关于这个工具箱的参考文档可以好好看一下,看完基本就差不多了:

https://ww2.mathworks.cn/help/stats/train-classification-models-in-classification-learner-app.html

有个训练决策树模型的例子:具体步骤很清晰,换成其他模型以此类推

https://ww2.mathworks.cn/help/stats/train-decision-trees-in-classification-learner-app.html

还有对新数据的预测:https://ww2.mathworks.cn/help/stats/export-classification-model-for-use-with-new-data.html 

简单使用步骤:

 

  1. 点击APP下,机器学习与深度学习类中的classification learner 
  2. 点击New Session
图1
​​​​

 3.我选择的是from workspace,我的训练集数目为8400,注意我选择的变量t是8400*124的矩阵(8400*123的训练数据和8400*1的标签组成的),导入时工具箱会自动拆分。我这里其他选项默认,然后选择start session。 

 

图2

 

4.从model type 中选择你需要的模型,点击train开始训练模型训练结束后导出模型,点击export model,我选择的是generate code,再点击保存文件,文件名为trainedclassifier.m。

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值