聚类分析:1.相似性测度

相似性测度就是为聚类进行服务的,通过相似性测度来进行聚类。
一个样本都是一个n维向量,在空间中就是一个点,即坐标,所以两个样本相似就是两个点的距离相近。

在这里插入图片描述
在这里插入图片描述
在正式讲解具体的距离测度方法,这里现讲两种常用的两种运算:

在这里插入图片描述

欧式距离是最常用的相似性测度方法,但也存在缺陷,就是不同的向量尺度里结果是不一样的,即向量分值的单位不同,如一个是L,另一个是ml,算出来的聚类结果可能是不一样的,可以通过数据归一化处理,减轻这种影响。

在这里插入图片描述
在这里插入图片描述
马氏距离是欧式距离的升级版,克服了欧式距离的缺陷,欧式距离是一种特殊的马氏距离。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值