残差网络理论+CNN在MNIST数字识别实现

欢迎关注

CNN中残差网络的使用

  • K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp. 770-778.doi: 10.1109/CVPR.2016.90
  1. 创新点:

    • 残差网络依旧让非线形层满足 H ( x , w h ) H(x,w_h) H(x,wh) (普通网络的映射关系),然后从输入直接引入一个短连接到非线形层的输出上,使得整个映射变为:
      y = H ( x , w h ) + x y=H(x,w_h)+x y=H(x,wh)+x
      在这里插入图片描述
      图中 F ( x ) = H ( x , w h ) F(x) = H(x,w_h) F(x)=H(x,wh)
  2. 优势

    • 一方面是残差网络更好的拟合分类函数以获得更高的分类精度,这个理论给了一个很合理的启发,就是原则上,带短连接的网络的拟合高维函数的能力比普通连接的网络更强。ResNet在增加网络深度的同时,却并没有增加网络的复杂度,而且效果远远好于其他如VGG,GoogleNet等网络。随着层数的增加,这一优势越发明显。
    • 残差网络解决网络在层数加深时优化训练上的难题(短链接)。
    • 恒等映射不会给模型带来额外的参数和计算量。
  3. 劣势:

    ​介绍了两种 Shortcut connections,第一种用于在特征相加时维度相等的情况下,即恒等映射,显然,第二种用于不相等的情况。

    • 恒等映射不会给模型带来额外的参数和计算量,不过,使用不含参的shortcut connections需要 x 和 F(x) 的维度相等,不然无法相加。
    • 维度不相等时,需要进行匹配。
  4. 原因:

    • 网络特性:在某些应用领域中,深层次的网络至关重要。但深层次的网络难以训练,易出现梯度消失或梯度爆炸(problem of vanishing/exploding gradients)。但是,这些问题已经通过 normalized initialization 和 intermediate normalization layers(即BN层)基本被解决了,从而使得网络可以达到数十层的深度,并且可以使用反向传播算法有效地训练。 但是,在更深的网路开始收敛时,暴露出一个被称为“退化“(degradation problem of training accuracy)的问题:随着网络深度增加,在训练集上的精度达到饱和,然后迅速下降。
      在这里插入图片描述
      如图所示x为输入,F(x)为普通神经网络的输出,x 一个恒等映射的快捷连接,ReLu是激活函数。那么为什么会出现退化问题呢,即更深的网络不能保证性能至少等价于较浅的网络呢?假设我们去掉快捷连接 x,我们要想保证 x 经过weight layer形成恒等映射,则F(x) =H(x)= x,此处的H(x)为网络希望拟合潜在的映射 。事实表明这个过程的优化是非常困难的,比如 x = 10,此时F(x) = 10.1,此时变化率为(10.1 - 10) / 10 = 1%;当我们加入了快捷连接之后 H(x)=F(x)+x则 H(x)=10.1,F(x) =10.1-10= 0.1,变化率为(0.1 - 10) / 10 ≈ 100%。这对于权值的调节是有很大好处的,迫使权重逼近于0,因此将F(x)优化为0,此时 H(x) =x ,完成恒等映射。现实训练中,权重不可能完全接近于 0,F(x) 只能逼近与 0。综上所述,当一个网络训练一定程度,准确度不在 提高时,我们可以链接残差网络,因为后面几乎是恒等映射,用此中方法误差不会比浅层网络大,网络还可以继续优化,提高网络性能。

      换句话说,我们加入快捷连接之后,使得原来的恒等映射变成了零映射,网络更容易优化。参考文章1

    • 场景特性: 目标检测、图像分割。

代码:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets  # 放置了许多常用数据集,包括手写数字识别
import torch.nn.functional as F

数据预处理

transform = transforms.Compose([
    transforms.ToTensor(),  # 转张量,将值缩放到[0,1]之间
    transforms.Normalize((0.1307,),(0.3081,))  # 归一化,第一个为均值,第二个为方差
])
# 加载数据
train_dataset = datasets.MNIST(root= "E:/MNIST/mnist",
                              train=True,  # 下载训练集
                              transform=transform,  # 转张量,将值缩放到[0,1]之间.也可以写成transform = transforms.ToTensor()      
                              download=True
                              )

test_dataset = datasets.MNIST(root= "E:/MNIST/mnist",
                              train=False,  # 下载训练集
                              transform=transform,  # 转张量,将值缩放到[0,1]之间
                              download=True
                              )

train_loader = DataLoader(dataset=train_dataset,
                         batch_size=64,
                         shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=64,
                         shuffle=False)

Residual Block

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding = 1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding = 1)
    # 两个卷积层就使用一次残差网络。    
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x+y)  # 先求和再激活。 

搭建CNN模型

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
        self.mp = nn.MaxPool2d(2)
        
        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)
        
        self.fc = nn.Linear(512, 10)
        
    def forward(self, x):  # (batch_size, channel, W, H)
        in_size = x.size(0)  # batch_size
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x
model = Net()
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr= 0.01, momentum= 0.5)

训练函数

def train(epoch):
    runing_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target =data
        optimizer.zero_grad()
        
        outputs = model(inputs)
        loss = loss_fn(outputs, target)
        loss.backward()
        optimizer.step()
        
        runing_loss += loss.item()
        if batch_idx % 300  == 299:
            print("[%d, %5d] loss: %.3f" % (epoch +1, batch_idx+1, runing_loss/300))
            runing_loss = 0.0

测试函数

def test():
    correct = 0
    total =0
    with torch.no_grad():
        for data in test_loader:
            images, labels =data
            outputs = model(images)  
            _, predicted = torch.max(outputs.data, dim =1 )  # 返回两个值,第一个是最大值,第二个是最大值的索引。dim=1表示在列维度求以上结果,dim = 0表示在行维度求以上结果。         
            total += labels.size(0)  # 每一个batch_size 中labels是一个(N,1)的元组,size(0)=N
            correct +=(predicted == labels).sum().item()  # 对的总个数
    print("Accuracy on the test set %d %%" % (100*correct/total))

网络启动

if __name__=="__main__":
    for epoch in range(10):
        train(epoch)
        if epoch % 2 ==0:
            test()
            
[1,   300] loss: 0.535
[1,   600] loss: 0.165
[1,   900] loss: 0.121
Accuracy on the test set 96 %
[2,   300] loss: 0.085
[2,   600] loss: 0.088
[2,   900] loss: 0.077
[3,   300] loss: 0.060
[3,   600] loss: 0.060
[3,   900] loss: 0.060
Accuracy on the test set 98 %
[4,   300] loss: 0.046
[4,   600] loss: 0.052
[4,   900] loss: 0.047
[5,   300] loss: 0.039
  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
训练数据保存为deep_convnet_params.pkl,UI使用wxPython编写 卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
以下是使用ResNet网络模型实现MNIST手写数字识别的代码示例: ```python import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU, Add, GlobalAveragePooling2D, Dense from tensorflow.keras.models import Model # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据预处理:将像素值缩放到0到1之间,并增加一维通道数 x_train = x_train.astype('float32') / 255.0 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.astype('float32') / 255.0 x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) # 定义ResNet网络模型 def residual_block(inputs, filters, strides=1): shortcut = inputs # 第一个卷积层 x = Conv2D(filters, kernel_size=3, strides=strides, padding='same')(inputs) x = BatchNormalization()(x) x = ReLU()(x) # 第二个卷积层 x = Conv2D(filters, kernel_size=3, strides=1, padding='same')(x) x = BatchNormalization()(x) # 如果输入和输出的维度不同,则使用1x1卷积调整维度 if shortcut.shape[-1] != filters: shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='same')(shortcut) shortcut = BatchNormalization()(shortcut) # 将残差块的输出与输入相加,构成下一层的输入 x = Add()([x, shortcut]) x = ReLU()(x) return x def ResNet(input_shape=(28, 28, 1), num_classes=10): inputs = Input(shape=input_shape) # 第一层卷积 x = Conv2D(64, kernel_size=3, strides=1, padding='same')(inputs) x = BatchNormalization()(x) x = ReLU()(x) # 残差块组1 x = residual_block(x, filters=64, strides=1) x = residual_block(x, filters=64, strides=1) x = residual_block(x, filters=64, strides=1) # 残差块组2 x = residual_block(x, filters=128, strides=2) x = residual_block(x, filters=128, strides=1) x = residual_block(x, filters=128, strides=1) # 残差块组3 x = residual_block(x, filters=256, strides=2) x = residual_block(x, filters=256, strides=1) x = residual_block(x, filters=256, strides=1) # 残差块组4 x = residual_block(x, filters=512, strides=2) x = residual_block(x, filters=512, strides=1) x = residual_block(x, filters=512, strides=1) # 全局平均池化 x = GlobalAveragePooling2D()(x) # 全连接层 x = Dense(num_classes, activation='softmax')(x) model = Model(inputs=inputs, outputs=x) return model # 创建ResNet模型 model = ResNet(num_classes=10) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test)) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值