导读:
在数字信号处理中,我们把信号分为时域信号与频域信号。傅里叶发现:任何周期信号(时域)都能够由不同频率谐波的正弦波(频域)叠加而成。沟通起时域频域最为关键的一点就是我们要学习的傅里叶变换(Fourier Transform)。
在CSDN上有诸多大佬,对傅里叶变换的来龙去脉做了较为清晰的阐释。此处就不过多赘述其原理,感兴趣的自行阅读:傅里叶变换的理解-从正弦信号到傅里叶_正弦信号的傅里叶变换-CSDN博客;
数字信号处理期末总复习_级联型结构怎么因式分解-CSDN博客。
本人更加喜欢的是《数字信号处理期末总复习》,总有种让我还在期末备考的感觉。并且让大家不仅仅对傅里叶变换,还对数字信号有了一个基础的了解。
连续与离散傅里叶变换
傅里叶变换的常见公式如图1所示。

图1. 常见傅里叶变换公式
首先,对于傅里叶变换先给一个总结性的结果,
1、如果时域信号是周期的,那么它的频谱就是离散的。
2、如果时域信号是非周期的,那么它的频谱就是连续的。
3、如果时域信号是离散的,那么它的频谱就是周期的。
4、如果时域信号是连续的,那么它的频谱就是非周期的。
如果将时域信号周期非周期,离散非离散进行组合,就会得到四种组合,1、周期连续;2、非周期连续;3、非周期离散;4、周期离散。
实际上,我们常用的傅里叶变换公式为连续时间傅里叶变化,即CTFT(Continuous-Time Fourier Transform),用来分析和处理连续时间的模拟信号。在实际应用中,由于连续时间信号的频谱可能是无限宽的,因此很难直接计算CTFT。通常,我们会对信号进行窗函数处理,将其截断为有限时长的信号,然后使用离散时间傅里叶变换(DTFT)或离散傅里叶变换(DFT)来近似计算。
离散时间傅里叶变换(Discrete-Time Fourier Transform,DTFT)是连续时间信号的傅里叶变换在离散时间信号上的推广。DTFT为无限长序列提供了频域分析的方法。对于一个离散时间信号 x[n],其DTFT定义为:

最低0.47元/天 解锁文章
6233

被折叠的 条评论
为什么被折叠?



