一文精通Fourier Transform--傅里叶变换

 导读:

        在数字信号处理中,我们把信号分为时域信号与频域信号。傅里叶发现:任何周期信号(时域)都能够由不同频率谐波的正弦波(频域)叠加而成。沟通起时域频域最为关键的一点就是我们要学习的傅里叶变换(Fourier Transform)。

        在CSDN上有诸多大佬,对傅里叶变换的来龙去脉做了较为清晰的阐释。此处就不过多赘述其原理,感兴趣的自行阅读:傅里叶变换的理解-从正弦信号到傅里叶_正弦信号的傅里叶变换-CSDN博客

数字信号处理期末总复习_级联型结构怎么因式分解-CSDN博客

本人更加喜欢的是《数字信号处理期末总复习》,总有种让我还在期末备考的感觉。并且让大家不仅仅对傅里叶变换,还对数字信号有了一个基础的了解。

 连续与离散傅里叶变换

傅里叶变换的常见公式如图1所示。

 图1. 常见傅里叶变换公式

首先,对于傅里叶变换先给一个总结性的结果,

1、如果时域信号是周期的,那么它的频谱就是离散的。

2、如果时域信号是非周期的,那么它的频谱就是连续的。

3、如果时域信号是离散的,那么它的频谱就是周期的。

4、如果时域信号是连续的,那么它的频谱就是非周期的。

    如果将时域信号周期非周期,离散非离散进行组合,就会得到四种组合,1、周期连续;2、非周期连续;3、非周期离散;4、周期离散。

        实际上,我们常用的傅里叶变换公式为连续时间傅里叶变化,即CTFT(Continuous-Time Fourier Transform),用来分析和处理连续时间的模拟信号。在实际应用中,由于连续时间信号的频谱可能是无限宽的,因此很难直接计算CTFT。通常,我们会对信号进行窗函数处理,将其截断为有限时长的信号,然后使用离散时间傅里叶变换(DTFT)或离散傅里叶变换(DFT)来近似计算。

        离散时间傅里叶变换(Discrete-Time Fourier Transform,DTFT)是连续时间信号的傅里叶变换在离散时间信号上的推广。DTFT为无限长序列提供了频域分析的方法。对于一个离散时间信号 x[n],其DTFT定义为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值