Dehong Fang, Jifu Tan, Immersed boundary-physics informed machine
learning approach for fluid–solid coupling, Ocean Engineering, Volume
263, 2022, 112360, ISSN 0029-8018,
https://doi.org/10.1016/j.oceaneng.2022.112360.Abstract: Fluid–solid coupling is commonly used but sometimes
expensive in large-scale simulations for fluid dynamics. Conventional
numerical methods rely on high performance computers and parallel
computing techniques to accelerate simulations. In this work, a
lightweight immersed boundary-physics informed machine learning model
is proposed for the fluid–solid coupling based on the physical
framework of multi-direct forcing of the immersed boundary method. Two
dimensional flows past a static cylinder are adopted as case studies
for the drag. It shows close agreements of drag coefficient among
simulations conducted by the immersed boundary-lattice Boltzmann
method (IB
机器学习+CFD的后续
最新推荐文章于 2025-04-20 17:23:51 发布