机器学习+CFD的后续

Dehong Fang, Jifu Tan, Immersed boundary-physics informed machine
learning approach for fluid–solid coupling, Ocean Engineering, Volume
263, 2022, 112360, ISSN 0029-8018,
https://doi.org/10.1016/j.oceaneng.2022.112360.

Abstract: Fluid–solid coupling is commonly used but sometimes
expensive in large-scale simulations for fluid dynamics. Conventional
numerical methods rely on high performance computers and parallel
computing techniques to accelerate simulations. In this work, a
lightweight immersed boundary-physics informed machine learning model
is proposed for the fluid–solid coupling based on the physical
framework of multi-direct forcing of the immersed boundary method. Two
dimensional flows past a static cylinder are adopted as case studies
for the drag. It shows close agreements of drag coefficient among
simulations conducted by the immersed boundary-lattice Boltzmann
method (IB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值