cuda和cudnn安装与配置(Linux)

#链接cuda和cudnn安装与配置(windows)

# 其实根据cuda和cudnn官网提供的安装教程已经足够
# cuda-10.2为例,cuda-10.1和 10.2 版本均有可视化界面,之前的低版本内容都是一样的,仅是有框和无框的区别

下载

cuda
cudnn(需要注册才能下载)
在这里插入图片描述
在这里插入图片描述

nvidia驱动

在这里插入图片描述

# nvidia-smi(驱动查看命令)

在这里插入图片描述
#备注
驱动安装(其实可直接在Linux可视化界面直接安装)的问题大多出在命令安装下。禁用nouveau、安装&卸载nvidia驱动

cuda

开始安装

# sudo sh cuda_10.0.130_410.48_linux.run

接受安装协议
ls
(可直接install默认设置)建议选择options进行自定义设置(考虑到存储空间和位置),包括:1、自定义选择安装内容;2、自定义每一个组件的安装路径(Driver、Toolkit、Samples、Library)。界面的操作,窗口底部已经提示
在这里插入图片描述

对于一些低版本的cuda,在官网上还存在补丁文件,为了使得cuda更加的完善,可以用相同的方式进行安装

$ sudo sh cuda_9.0.176.1_linux.run 
$ sudo sh cuda_9.0.176.2_linux.run 
$ sudo sh cuda_9.0.176.3_linux.run
$ sudo sh cuda_9.0.176.4_linux.run

在这里插入图片描述

安装完成

自定义配置好了以后,等待安装成功即可
在这里插入图片描述

#对以上的截图进行说明,可见说的很清楚,包括了:1、成功安装的和未选择安装的;2、如何卸载等信息

#整体说明,除了驱动外,Toolkit和Samples已经安装了
Driver:   Not Selected
Toolkit:  Installed in /home/John/Softwares/cuda-10.2/
Samples:  Installed in /home/John/Softwares/cuda-samples/

#去核实一遍,刚指定的安装目录下是否存在以下文件
Please make sure that
 -   PATH includes /home/John/Softwares/cuda-10.2/bin
 -   LD_LIBRARY_PATH includes /home/John/Softwares/cuda-10.2/lib64, or, add /home/John/Softwares/cuda-10.2/lib64 to /etc/ld.so.conf and run ldconfig as root

#若先想要卸载cuda,执行该命令即可
To uninstall the CUDA Toolkit, run cuda-uninstaller in /home/John/Softwares/cuda-10.2/bin

#有一个pdf安装指导文件
Please see CUDA_Installation_Guide_Linux.pdf in /home/John/Softwares/cuda-10.2/doc/pdf for detailed information on setting up CUDA.

#因为驱动已经满足要求,所以cuda安装过程中选择了no,并说明了版本至少是440.00
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A drriver of version at least 440.00 is required for CUDA 10.2 functionality to work.

#若还是想要安装驱动,可以再安装一次.run文件,但加了参数说明只安装驱动
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver
    
#安装过程的日志写在了这个.log文件中,若出现安装错误可以看日志,查看出错的步骤在哪   
Logfile is /var/log/cuda-installer.log

配置环境变量

进入当前用户的~/.bashrc文件进行路径配置

# vim ~/.bashrc 
export  PATH=/your_install_path/cuda-10.0/bin:$PATH
export  LD_LIBRARY_PATH=/your_install_path/cuda-10.0/lib64$LD_LIBRARY_PATH

在这里插入图片描述

验证安装

#nvcc -V

在这里插入图片描述

cudnn

直接安装即可

sudo dpkg -i libcudnn7_×××_amd64.deb
sudo dpkg -i libcudnn7-dev_×××_amd64.deb
sudo dpkg -i libcudnn7-doc_×××_amd64.deb #可装可不装
### 不同操作系统上的 CUDA cuDNN 安装方法 #### Linux 系统下的 CUDA cuDNN 安装Linux 环境下,安装 CUDA cuDNN 的流程如下: 1. **NVIDIA 驱动安装** 确保系统已安装目标 CUDA 版本兼容的 NVIDIA 显卡驱动。可以通过命令 `nvidia-smi` 检查当前显卡驱动版本以及 GPU 是否正常工作。 2. **CUDA Toolkit 安装** 下载并安装官方提供的完整版 CUDA Toolkit。如果仅用于运行预编译的 CUDA 应用程序(如 PyTorch 中的 cuda toolkit),可以依赖于框架自带的工具包;但如果需要开发自定义扩展,则必须安装完整的 CUDA 工具链[^1]。 3. **cuDNN 安装** - 前往 NVIDIA 官网下载对应 CUDA 版本的 cuDNN 文件压缩包。 - 解压文件并将其中的内容复制到 CUDA 安装目录中的相应位置,通常为 `/usr/local/cuda/include/` `/usr/local/cuda/lib64/`。 4. **环境变量配置** 修改 `.bashrc` 或者其他 shell 初始化脚本,添加以下路径设置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` #### Windows 系统下的 CUDA cuDNN 安装 对于 Windows 用户而言,其安装方式略有差异: 1. **NVIDIA 驱动更新** 类似于 Linux 平台,先确认硬件支持情况并通过 GeForce Experience 或手动访问官网获取最新稳定版驱动器软件。 2. **CUDA Toolkit 设置向导模式** 使用图形界面引导完成整个过程更加直观简便。启动安装程序后按照提示逐步选择组件直至结束即可实现基础功能部署。 3. **集成 cuDNN 至现有项目结构里** 同样是从开发者专区取得资源链接地址之后解压至本地磁盘分区根目录下面新建名为 “cuda”的子文件夹内存放头文件(.h)及动态库(.dll/.lib),最后记得同步调整 Visual Studio 开发环境中关于附加包含目录(Additional Include Directories)/库目录(Linker->General->Additional Library Directories)等相关选项参数值指向刚才创建出来的那个特定存储区域。 #### macOS 系统下的 CUDA cuDNN 安装注意事项 由于苹果公司逐渐淘汰对独立显卡的支持,在 Mac 设备上原生启用 CUDA 加速变得越来越困难除非借助虚拟机模拟方案或者通过 Rosetta 转义机制间接达成目的。因此建议优先考虑基于云服务提供商搭建远程计算节点来满足高性能需求场景的应用场合。 ```python import torch print(torch.cuda.is_available()) # 测试是否成功启用了GPU加速特性 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值